Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 27, Issue 6, pp 1882–1890 | Cite as

Allograft for knee ligament surgery: an American perspective

  • Robert TishermanEmail author
  • Kevin Wilson
  • Alexandra Horvath
  • Kevin Byrne
  • Joseph De Groot
  • Volker Musahl



Allografts are frequently use for ligamentous reconstruction at the knee. In the United States, tissue donation and distribution are highly regulated processes with thorough oversight from private and government entities. Allograft is widely available in the United States and allograft procurement is a large industry with varying procurement, sterilization, processing, and distribution procedures. It is important to understand allograft regulation and processing which may affect graft mechanical properties and biological graft integration.


English-language literature, United States government and regulatory agency statues pertaining to allograft procurement, distribution, and usage were reviewed and the findings summarized.


During the processing of allograft, multiple factors including sterilization procedures, irradiation, storage conditions, and graft type all affect the biomechanical properties of the allograft tissue. Biological incorporation and ligamentization of allograft does occur, but at a slower rate compared with autograft. For ligamentous reconstruction around the knee, allograft offers shorter operative time, no donor-site morbidity, but has shown an increased risk for graft failure compared to autograft.


This article reviews the regulations on graft tissue within the United States, factors affecting the biomechanics of allograft tissue, differences in allograft tissue choices, and the use of allograft for anterior cruciate ligament reconstruction and multiligamentous knee injury reconstruction.

Level of evidence



Allograft Reconstruction Knee Sports medicine ACL Multi-ligament knee injury 


Author contributions

VM conceived of the study, participated in the review process, and helped to draft the manuscript. RT, JDG, KW, KB, and AH carried out the literature review and drafted the manuscript. All authors read and approved the final manuscript.


No external funding was used.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.


  1. 1.
    Harner CD, Olson E, Irrgang JJ, Silverstein S, Fu FH, Silbey M (1996) Allograft versus autograft anterior cruciate ligament reconstruction: 3- to 5-year outcome. Clin Orthop Relat Res 324:134–144Google Scholar
  2. 2.
    Sun K, Tian S, Zhang J, Xia C, Zhang C, Yu T (2009) Anterior cruciate ligament reconstruction with bone-patellar tendon-bone autograft versus allograft. Arthroscopy 25(7):750–759CrossRefPubMedGoogle Scholar
  3. 3.
    Bhatia S, Bell R, Frank RM, Rodeo SA, Bach BR, Cole BJ, Chubinskaya S, Wang VM, Verma NN (2012) Bony incorporation of soft tissue anterior cruciate ligament grafts in an animal model: autograft versus allograft with low-dose gamma irradiation. Am J Sports Med 40(8):1789–1798CrossRefPubMedGoogle Scholar
  4. 4.
    Desai N, Andernord D, Sundemo D, Alentorn-Geli E, Musahl V, Fu F, Forssblad M, Samuelsson K (2017) Revision surgery in anterior cruciate ligament reconstruction: a cohort study of 17,682 patients from the Swedish National Knee Ligament Register. Knee Surg Sports Traumatol Arthrosc 25(5):1542–1554CrossRefPubMedGoogle Scholar
  5. 5.
    Friedlaender GE (2000) Appropriate screening for prevention of infection transmission by musculoskeletal allografts. Instr Course Lect 49:615–619PubMedGoogle Scholar
  6. 6.
    Rose MB, Domes C, Farooqi M, Crawford DC (2016) A prospective randomized comparison of two distinct allogenic tissue constructs for anterior cruciate ligament reconstruction. Knee 23(6):1112–1120CrossRefPubMedGoogle Scholar
  7. 7.
    American Association of Tissue Banks (2018) Accessed 26 Nov 2018
  8. 8.
    Congress (2006) Laws, National Conference of Commissioners on Uniform State—Revised Uniform Anatomical Gift ActGoogle Scholar
  9. 9.
    Congress National Organ Transplantation Act (1984) p Pub L 98–507, 98 Stat 2339–2348Google Scholar
  10. 10.
    American Association of Tissue Banks (2013) Guidance document: evaluation of body cooling at standard D5.400Google Scholar
  11. 11.
    Organ Procurement and Transplantation Network Policies (2018) Organ procurement and transplantation network. Accessed 1 Dec 2019
  12. 12.
    Congress (1993) Human tissue intended for transplantation—FDA Interim rule: opportunity for public comment. Fed. Regist., pp 65514–65521Google Scholar
  13. 13.
    Morris A, Strickett MG, Barratt-Boyes BG (1990) Use of aortic valve allografts from hepatitis B surface antigen-positive donors. Ann Thorac Surg 49(5):802–805CrossRefPubMedGoogle Scholar
  14. 14.
    McGilvray KC, Santoni BG, Turner AS, Bogdansky S, Wheeler DL, Puttlitz CM (2011) Effects of 60Co gamma radiation dose on initial structural biomechanical properties of ovine bone-patellar tendon-bone allografts. Cell Tissue Bank 12(2):89–98CrossRefPubMedGoogle Scholar
  15. 15.
    Hoburg A, Keshlaf S, Schmidt T, Smith M, Gohs U, Perka C, Pruss A, Scheffler S (2015) High-dose electron beam sterilization of soft-tissue grafts maintains significantly improved biomechanical properties compared to standard gamma treatment. Cell Tissue Bank 16(2):219–226CrossRefPubMedGoogle Scholar
  16. 16.
    Baldini T, Caperton K, Hawkins M, McCarty E (2016) Effect of a novel sterilization method on biomechanical properties of soft tissue allografts. Knee Surg Sports Traumatol Arthrosc 24(12):3971–3975CrossRefPubMedGoogle Scholar
  17. 17.
    Scheffler SU, Gonnermann J, Kamp J, Przybilla D, Pruss A (2008) Remodeling of ACL allografts is inhibited by peracetic acid sterilization. Clin Orthop Relat Res 466(8):1810–1818CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kaminski A, Gut G, Marowska J, Lada-Kozlowska M, Biwejnis W, Zasacka M (2009) Mechanical properties of radiation-sterilised human bone-tendon-bone grafts preserved by different methods. Cell Tissue Bank 10(3):215–219CrossRefPubMedGoogle Scholar
  19. 19.
    Curran AR, Adams DJ, Gill JL, Steiner ME, Scheller AD (2004) The biomechanical effects of low-dose irradiation on bone-patellar tendon-bone allografts. Am J Sports Med 32(5):1131–1135CrossRefPubMedGoogle Scholar
  20. 20.
    Yanke AB, Bell R, Lee A, Kang RW, Mather RC, Shewman EF, Wang VM, Bach BR (2013) The biomechanical effects of 1.0 to 1.2 Mrad of gamma irradiation on human bone-patellar tendon-bone allografts. Am J Sports Med 41(4):835–840CrossRefPubMedGoogle Scholar
  21. 21.
    Fideler BM, Vangsness CT, Lu B, Orlando C, Moore T (1995) Gamma irradiation: effects on biomechanical properties of human bone-patellar tendon-bone allografts. Am J Sports Med 23(5):643–646CrossRefPubMedGoogle Scholar
  22. 22.
    Gibbons MJ, Butler DL, Grood ES, Bylski-Austrow DI, Levy MS, Noyes FR (1991) Effects of gamma irradiation on the initial mechanical and material properties of goat bone-patellar tendon-bone allografts. J Orthop Res 9(2):209–218CrossRefPubMedGoogle Scholar
  23. 23.
    Goertzen MJ, Clahsen H, Bürrig KF, Schulitz KP (1994) Anterior cruciate ligament reconstruction using cryopreserved irradiated bone-ACL-bone-allograft transplants. Knee Surg Sports Traumatol Arthrosc 2(3):150–157CrossRefPubMedGoogle Scholar
  24. 24.
    Maletis GB, Chen J, Inacio MCS, Love RM, Funahashi TT (2017) Increased risk of revision after anterior cruciate ligament reconstruction with soft tissue allografts compared with autografts: graft processing and time make a difference. Am J Sports Med 45(8):1837–1844CrossRefPubMedGoogle Scholar
  25. 25.
    Rappé M, Horodyski M, Meister K, Indelicato PA (2007) Nonirradiated versus irradiated achilles allograft: in vivo failure comparison. Am J Sports Med 35(10):1653–1658CrossRefPubMedGoogle Scholar
  26. 26.
    Schmidt T, Hoburg A, Broziat C, Smith MD, Gohs U, Pruss A, Scheffler S (2012) Sterilization with electron beam irradiation influences the biomechanical properties and the early remodeling of tendon allografts for reconstruction of the anterior cruciate ligament (ACL). Cell Tissue Bank 13(3):387–400CrossRefPubMedGoogle Scholar
  27. 27.
    Dong S, Huangfu X, Xie G, Zhang Y, Shen P, Li X, Qi J, Zhao J (2015) Decellularized versus fresh-frozen allografts in anterior cruciate ligament reconstruction: an in vitro study in a rabbit model. Am J Sports Med 43(8):1924–1934CrossRefPubMedGoogle Scholar
  28. 28.
    Suhodolčan L, Brojan M, Kosel F, Drobnič M, Alibegović A, Brecelj J (2013) Cryopreservation with glycerol improves the in vitro biomechanical characteristics of human patellar tendon allografts. Knee Surg Sports Traumatol Arthrosc 21(5):1218–1225CrossRefPubMedGoogle Scholar
  29. 29.
    Giannini S, Buda R, Di Caprio F, Agati P, Bigi A, De Pasquale V, Ruggeri A (2008) Effects of freezing on the biomechanical and structural properties of human posterior tibial tendons. Int Orthop 32(2):145–151CrossRefPubMedGoogle Scholar
  30. 30.
    Jung HJ, Vangipuram G, Fisher MB, Yang G, Hsu S, Bianchi J, Ronholdt C, Woo SLY (2011) The effects of multiple freeze–thaw cycles on the biomechanical properties of the human bone-patellar tendon-bone allograft. J Orthop Res 29(8):1193–1198CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Chen L, Wu Y, Yu J, Jiao Z, Ao Y, Yu C, Wang J, Cui G (2011) Effect of repeated freezing-thawing on the Achilles tendon of rabbits. Knee Surg Sports Traumatol Arthrosc 19(6):1028–1034CrossRefPubMedGoogle Scholar
  32. 32.
    Lansdown DA, Riff AJ, Meadows M, Yanke AB Jr BRB (2017) What factors influence the biomechanical properties of allograft tissue for ACL reconstruction? A systematic review. Clin Orthop Relat Res 475(10):2412–2426CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Mabe I, Hunter S (2014) Quadriceps tendon allografts as an alternative to Achilles tendon allografts: a biomechanical comparison. Cell Tissue Bank 15(4):523–529CrossRefPubMedGoogle Scholar
  34. 34.
    Chan DB, Temple HT, Latta LL, Mahure S, Dennis J, Kaplan LD (2010) A biomechanical comparison of fan-folded, single-looped fascia lata with other graft tissues as a suitable substitute for anterior cruciate ligament reconstruction. Arthroscopy 26(12):1641–1647CrossRefPubMedGoogle Scholar
  35. 35.
    Butler DL, Guan Y, Kay MD, Cummings JF, Feder SM, Levy MS (1992) Location-dependent variations in the material properties of the anterior cruciate ligament. J Biomech 25(5):511–518CrossRefPubMedGoogle Scholar
  36. 36.
    Skelley NW, Castile RM, York TE, Gruev V, Lake SP, Brophy RH (2015) Differences in the microstructural properties of the anteromedial and posterolateral bundles of the anterior cruciate ligament. Am J Sports Med 43(4):928–936CrossRefPubMedGoogle Scholar
  37. 37.
    Kleiner JB, Amiel D, Roux RD, Akeson WH (1986) Origin of replacement cells for the anterior cruciate ligament autograft. J Orthop Res 4(4):466–474CrossRefPubMedGoogle Scholar
  38. 38.
    Jackson DW, Grood ES, Goldstein JD, Rosen MA, Kurzweil PR, Cummings JF, Simon TM (1993) A comparison of patellar tendon autograft and allograft used for anterior cruciate ligament reconstruction in the goat model. Am J Sports Med 21(2):176–185CrossRefPubMedGoogle Scholar
  39. 39.
    Amiel D, Kleiner JB, Roux RD, Harwood FL, Akeson WH (1986) The phenomenon of “ligamentization”: anterior cruciate ligament reconstruction with autogenous patellar tendon. J Orthop Res 4(2):162–172CrossRefPubMedGoogle Scholar
  40. 40.
    Arnoczky SP, Warren RF, Ashlock MA (1986) Replacement of the anterior cruciate ligament using a patellar tendon allograft: an experimental study. J Bone Joint Surg Am 68(3):376–385CrossRefPubMedGoogle Scholar
  41. 41.
    Nikolaou PK, Seaber AV, Glisson RR, Ribbeck BM, Bassett FH III (1986) Anterior cruciate ligament allograft transplantation. Long-term function, histology, revascularization, and operative technique. Am J Sports Med 14(5):348–360CrossRefPubMedGoogle Scholar
  42. 42.
    Strocchi R, De Pasquale V, Facchini A, Raspanti M, Zaffagnini S, Marcacci M (1996) Age-related changes in human anterior cruciate ligament (ACL) collagen fibrils. Ital J Anat Embryol 101(4):213–220PubMedGoogle Scholar
  43. 43.
    Jackson DW, Corsetti J, Simon TM (1996) Biologic incorporation of allograft anterior cruciate ligament replacements. Clin Orthop Relat Res 324:126–133Google Scholar
  44. 44.
    Takeuchi H, Niki Y, Matsunari H, Umeyama K, Nagashima H, Enomoto H, Toyama Y, Matsumoto M, Nakamura M (2016) Temporal changes in cellular repopulation and collagen fibril remodeling and regeneration after allograft anterior cruciate ligament reconstruction: an experimental study using kusabira-orange transgenic pigs. Am J Sports Med 44(9):2375–2383CrossRefPubMedGoogle Scholar
  45. 45.
    Bottoni CR, Smith EL, Shaha J, Shaha SS, Raybin SG, Tokish JM, Rowles DJ (2015) Autograft versus allograft anterior cruciate ligament reconstruction: a prospective, randomized clinical study with a minimum 10-year follow-up. Am J Sports Med 43(10):2501–2509CrossRefPubMedGoogle Scholar
  46. 46.
    Tian S, Ha C, Wang B, Wang Y, Liu L, Li Q, Yang X, Sun K (2017) Arthroscopic anatomic double-bundle ACL reconstruction using irradiated versus non-irradiated hamstring tendon allograft. Knee Surg Sports Traumatol Arthrosc 25(1):251–259CrossRefPubMedGoogle Scholar
  47. 47.
    Yoo SH, Song EK, Shin YR, Kim SK, Seon JK (2017) Comparison of clinical outcomes and second-look arthroscopic findings after ACL reconstruction using a hamstring autograft or a tibialis allograft. Knee Surg Sports Traumatol Arthrosc 25(4):1290–1297CrossRefPubMedGoogle Scholar
  48. 48.
    Guo L, Yang L, Duan X, He R, Chen G, Wang F, Zhang Y (2012) Anterior cruciate ligament reconstruction with bone-patellar tendon-bone graft: comparison of autograft, fresh-frozen allograft, and gamma-irradiated allograft. Arthroscopy 28(2):211–217CrossRefPubMedGoogle Scholar
  49. 49.
    Kwak Y-H, Lee S, Lee MC, Han H-S (2018) Anterior cruciate ligament reconstruction with quadriceps tendon-patellar bone allograft: matched case control study. BMC Musculoskelet Disord 19(1):45CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Peterson RK, Shelton WR, Bomboy AL (2001) Allograft versus autograft patellar tendon anterior cruciate ligament reconstruction: a 5-year follow-up. Arthroscopy 17(1):9–13CrossRefPubMedGoogle Scholar
  51. 51.
    Rahnemai-Azar AA, Sabzevari S, Irarrázaval S, Chao T, Fu FH (2016) Anatomical Individualized ACL Reconstruction. Arch Bone Joint Surg 4(4):291–297PubMedGoogle Scholar
  52. 52.
    Caborn DNM, Selby JB (2002) Allograft anterior tibialis tendon with bioabsorbable interference screw fixation in anterior cruciate ligament reconstruction. Arthroscopy 18(1):102–105CrossRefPubMedGoogle Scholar
  53. 53.
    Pearsall IVAW, Hollis JM, Russell GV, Scheer Z (2003) A biomechanical comparison of three lower extremity tendons for ligamentous reconstruction about the knee. Arthroscopy 19(10):1091–1096CrossRefPubMedGoogle Scholar
  54. 54.
    Yanke AB, Bell R, Lee AS, Shewman E, Wang VM, Bach BR (2013) Central-third bone-patellar tendon-bone allografts demonstrate superior biomechanical failure characteristics compared with hemi-patellar tendon grafts. Am J Sports Med 41(11):2521–2526CrossRefPubMedGoogle Scholar
  55. 55.
    Sun K, Zhang J, Wang Y, Zhang C, Xia C, Yu T, Tian S (2012) A prospective randomized comparison of irradiated and non-irradiated hamstring tendon allograft for ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 20(1):187–194CrossRefPubMedGoogle Scholar
  56. 56.
    Noh JH, Yi SR, Song SJ, Kim SW, Kim W (2011) Comparison between hamstring autograft and free tendon Achilles allograft: minimum 2-year follow-up after anterior cruciate ligament reconstruction using EndoButton and Intrafix. Knee Surg Sports Traumatol Arthrosc 19(5):816–822CrossRefPubMedGoogle Scholar
  57. 57.
    Delcroix GJR, Kaimrajh DN, Baria D, Cooper S, Reiner T, Latta L, D’Ippolito G, Schiller PC, Temple HT (2013) Histologic, biomechanical, and biological evaluation of fan-folded iliotibial band allografts for anterior cruciate ligament reconstruction. Arthroscopy 29(4):756–765CrossRefPubMedGoogle Scholar
  58. 58.
    Barzegar M, Hosseini A, Karimi M, Nazem K (2014) Can we use peroneus longus in addition to hamstring tendons for anterior cruciate ligament reconstruction? Adv Biomed Res 3(1):115CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Grassi A, Zaffagnini S, Muccioli GMM, Neri MP, Della Villa S, Marcacci M (2015) After revision anterior cruciate ligament reconstruction, who returns to sport? A systematic review and meta-analysis. Br J Sports Med 49(20):1295–1304CrossRefPubMedGoogle Scholar
  60. 60.
    Lawhorn KW, Howell SM, Traina SM, Gottlieb JE, Meade TD, Freedberg HI (2012) The effect of graft tissue on anterior cruciate ligament outcomes: a multicenter, prospective, randomized controlled trial comparing autograft hamstrings with fresh-frozen anterior tibialis allograft. Arthroscopy 28(8):1079–1086CrossRefPubMedGoogle Scholar
  61. 61.
    Jacobs CA, Burnham JM, Makhni E, Malempati CS, Swart E, Johnson DL (2017) Allograft augmentation of hamstring autograft for younger patients undergoing anterior cruciate ligament reconstruction. Am J Sports Med 45(4):892–899CrossRefPubMedGoogle Scholar
  62. 62.
    Scheffler SU, Schmidt T, Gangéy I, Dustmann M, Unterhauser F, Weiler A (2008) Fresh-frozen free-tendon allografts versus autografts in anterior cruciate ligament reconstruction: delayed remodeling and inferior mechanical function during long-term healing in sheep. Arthroscopy 24(4):448–458CrossRefPubMedGoogle Scholar
  63. 63.
    Van Eck CF, Schkrohowsky JG, Working ZM, Irrgang JJ, Fu FH (2012) Prospective analysis of failure rate and predictors of failure after anatomic anterior cruciate ligament reconstruction with allograft. Am J Sports Med 40(4):800–807CrossRefPubMedGoogle Scholar
  64. 64.
    Davies GJ, McCarty E, Provencher M, Manske RC (2017) ACL return to sport guidelines and criteria. Curr Rev Musculoskelet Med 10(3):307–314CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Müller U, Krüger-Franke M, Schmidt M, Rosemeyer B (2015) Predictive parameters for return to pre-injury level of sport 6 months following anterior cruciate ligament reconstruction surgery. Knee Surg Sports Traumatol Arthrosc 23(12):3623–3631CrossRefPubMedGoogle Scholar
  66. 66.
    Dekker TJ, Godin JA, Dale KM, Garrett WE, Taylor DC, Riboh JC (2017) Return to sport after pediatric anterior cruciate ligament reconstruction and its effect on subsequent anterior cruciate ligament injury. J Bone Joint Surg Am 99(11):897–904CrossRefPubMedGoogle Scholar
  67. 67.
    Kim S-J, Lee S-K, Choi CH, Kim S-H, Kim S-H, Jung M (2014) Graft selection in anterior cruciate ligament reconstruction for smoking patients. Am J Sports Med 42(1):166–172CrossRefPubMedGoogle Scholar
  68. 68.
    Shea KG, Carey JL, Richmond J, Sandmeier R, Pitts RT, Polousky JD, Chu C, Shultz SJ, Ellen M, Smith A, LaBella CR, Anderson AF, Musahl V, Myer GD, Jevsevar D, Bozic KJ, Shaffer W, Cummins D, Murray JN, Patel N, Shores P, Woznica A, Martinez Y, Gross L, Sevarino K (2015) The American Academy of Orthopaedic surgeons evidence-based guideline on management of anterior cruciate ligament injuries. J Bone Joint Surg 97(8):672–674CrossRefPubMedGoogle Scholar
  69. 69.
    Kaeding CC, Aros B, Pedroza A, Pifel E, Amendola A, Andrish JT, Dunn WR, Marx RG, McCarty EC, Parker RD, Wright RW, Spindler KP (2011) Allograft versus autograft anterior cruciate ligament reconstruction: predictors of failure from a MOON prospective longitudinal cohort. Sports Health 3(1):73–81CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Fanelli GC, Tomaszewski DJ (2007) Allograft use in the treatment of the multiple ligament injured knee. Sports Med Arthrosc 15(3):139–148CrossRefPubMedGoogle Scholar
  71. 71.
    Wascher DC, Becker JR, Dexter JG, Blevins FT (1999) Reconstruction of the anterior and posterior cruciate ligaments after knee dislocation. Results using fresh-frozen nonirradiated allografts. Am J Sports Med 27:189–196CrossRefPubMedGoogle Scholar
  72. 72.
    Fanelli GC, Giannotti BF, Edson CJ (1996) Arthroscopically assisted combined posterior cruciate ligament/posterior lateral complex reconstruction. Arthroscopy 12(5):5–14CrossRefPubMedGoogle Scholar
  73. 73.
    Harner CD, Waltrip RL, Bennett CH, Francis KA, Cole B, Irrgang JJ (2004) Surgical management of knee dislocations. J Bone Joint Surg Am 86(2):262–273CrossRefPubMedGoogle Scholar
  74. 74.
    Baer GS, Harner CD (2007) Clinical outcomes of allograft versus autograft in anterior cruciate ligament reconstruction. Clin Sports Med 26(4):661–681CrossRefPubMedGoogle Scholar
  75. 75.
    Krych AJ, Jackson JD, Hoskin TL, Dahm DL (2008) A meta-analysis of patellar tendon autograft versus patellar tendon allograft in anterior cruciate ligament reconstruction. Arthroscopy 24(3):292–298CrossRefPubMedGoogle Scholar
  76. 76.
    Kustos T, Balint L, Than P, Bardos T (2004) Comparative study of autograft or allograft in primary anterior cruciate ligament reconstruction. Int Orthop 28(5):290–293CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Sun K, Zhang J, Wang Y, Xia C, Zhang C, Yu T, Tian S (2011) Arthroscopic reconstruction of the anterior cruciate ligament with hamstring tendon autograft and fresh-frozen allograft: a prospective, randomized controlled study. Am J Sports Med 39(7):1430–1438CrossRefPubMedGoogle Scholar
  78. 78.
    Spindler KP, Huston LJ, Chagin KM, Kattan MW, Reinke EK, Amendola A, Andrish JT, Brophy RH, Cox CL, Dunn WR, Flanigan DC, Jones MH, Kaeding CC, Magnussen RA, Marx RG, Matava MJ, McCarty EC, Parker RD, Pedroza AD, Vidal AF, Wolcott ML, Wolf BR, Wright RW (2018) Ten-year outcomes and risk factors after anterior cruciate ligament reconstruction: a MOON longitudinal prospective cohort study. Am J Sports Med 46(4):815–825CrossRefPubMedGoogle Scholar
  79. 79.
    Tejwani SG, Chen J, Funahashi TT, Love R, Maletis GB (2015) Revision risk after allograft anterior cruciate ligament reconstruction: association with graft processing techniques, patient characteristics, and graft type. Am J Sports Med 43(11):2696–2705CrossRefPubMedGoogle Scholar
  80. 80.
    Center for Disease Control (2002) Update: allograft-associated bacterial infections—United States, 2002. Morbidity Mortality Weekly Report. Retrieved 9 Jan 2019
  81. 81.
    Mariscalco MW, Magnussen RA, Mehta D, Hewett TE, Flanigan DC, Kaeding CC (2014) Autograft versus nonirradiated allograft tissue for anterior cruciate ligament reconstruction: a systematic review. Am J Sports Med 42(2):492–499CrossRefPubMedGoogle Scholar
  82. 82.
    Zeng C, Gao S, Li H, Yang T, Luo W, Li Y, Lei G (2016) Autograft versus allograft in anterior cruciate ligament reconstruction: a meta-analysis of randomized controlled trials and systematic review of overlapping systematic reviews. Arthroscopy 32(1):153–63.e18CrossRefPubMedGoogle Scholar
  83. 83.
    Yu A, Prentice HA, Burfeind WE, Funahashi T, Maletis GB (2018) Risk of infection after allograft anterior cruciate ligament reconstruction: are nonprocessed allografts more likely to get infected? A cohort study of over 10,000 allografts. Am J Sports Med 46(4):846–851CrossRefPubMedGoogle Scholar
  84. 84.
    Greenberg DD, Robertson M, Vallurupalli S, White RA, Allen WC (2010) Allograft compared with autograft infection rates in primary anterior cruciate ligament reconstruction. J Bone Joint Surg Am 92(14):2402–2408CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2019

Authors and Affiliations

  1. 1.Department of Orthopaedic SurgeryUniversity of PittsburghPittsburghUSA
  2. 2.Department of Orthopaedics, Institute of Clinical Sciences, The Sahlgrenska AcademyUniversity of GothenburgGöteborgSweden

Personalised recommendations