Arthroscopic centralization restores residual knee laxity in ACL-reconstructed knee with a lateral meniscus defect

  • Tomomasa Nakamura
  • Monica A. Linde
  • Brandon D. Marshall
  • Hideyuki Koga
  • Takeshi Muneta
  • Patrick Smolinski
  • Freddie H. FuEmail author



The aim of this study was to evaluate the effects of knee biomechanics with an irreparable lateral meniscus defect using the centralization capsular meniscus support procedure in the setting of the ACL-reconstructed knee in a porcine model. The hypothesis is the arthroscopic centralization will decrease the laxity and rotation of the ACL-reconstructed knee.


Twelve fresh-frozen porcine knees were tested using a robotic testing system under the following loading conditions: (a) an 89.0 N anterior tibial load; (b) 4.0 N m internal and external rotational torques. Anatomic single-bundle ACL reconstruction with a 7 mm-diameter bovine extensor tendon graft was performed. A massive, middle segment, lateral meniscus defect was created via arthroscopy, and arthroscopic centralization was performed with a 1.4 mm anchor with a #2 suture. The LM states with ACL reconstruction evaluated were: intact, massive middle segment defect and with the lateral meniscus centralization procedure.


The rotation of the ACL reconstructed knee with the lateral meniscus defect was significantly higher than with the centralized lateral meniscus under an external rotational torque at 30° of knee flexion, and under an internal rotational torque at 30° and 45° of knee flexion. There were no systematic and consistent effects of LM centralization under anterior tibial translation.


In this porcine model, the capsular support of middle segment of the lateral meniscus using arthroscopic centralization improved the residual rotational laxity of the ACL-reconstructed knee accompanied with lateral meniscus dysfunction due to massive meniscus defect. This study quantifies the benefit to knee kinematics of arthroscopic centralization by restoring the lateral meniscal function.


Anterior cruciate ligament reconstruction Lateral meniscus: meniscus defect Meniscus centralization Rotational laxity Biomechanical testing Porcine 



This study was funded by the Department of Orthopaedic Surgery at the University of Pittsburgh.

Compliance with ethical standards

Conflict of interest

Patrick Smolinski, Ph.D., has received supplies for other studies from Arthrex, Inc. Other authors have no conflicts to disclose.

Ethical approval

No ethical approval was required from IACUC.

Informed consent

It is not applicable to this study.


  1. 1.
    Anz AW, Branch EA, Saliman JD (2014) Biomechanical comparison of arthroscopic repair constructs for meniscal root tears. Am J Sports Med 42:2699–2706CrossRefGoogle Scholar
  2. 2.
    Ayeni OR, Chahal M, Tran MN, Sprague S (2012) Pivot shift as an outcome measure for ACL reconstruction: a systematic review. Knee Surg Sports Traumatol Arthrosc 20:767–777CrossRefGoogle Scholar
  3. 3.
    Brandon ML, Haynes PT, Bonamo JR, Flynn MI, Barrett GR, Sherman MF (2006) The association between posterior-inferior tibial slope and anterior cruciate ligament insufficiency. Arthroscopy 22:894–899CrossRefGoogle Scholar
  4. 4.
    Chen L, Linde-Rosen M, Hwang SC, Zhou J, Xie Q, Smolinski P, Fu FH (2015) The effect of medial meniscal horn injury on knee stability. Knee Surg Sports Traumatol Arthrosc 23:126–131CrossRefGoogle Scholar
  5. 5.
    Crawford SN, Waterman BR, Lubowitz JH (2013) Long-term failure of anterior cruciate ligament reconstruction. Arthroscopy 29:1566–1571CrossRefGoogle Scholar
  6. 6.
    Feucht MJ, Grande E, Brunhuber J, Rosenstiel N, Burgkart R, Imhoff AB, Braun S (2015) Biomechanical evaluation of different suture materials for arthroscopic transtibial pull-out repair of posterior meniscus root tears. Knee Surg Sports Traumatol Arthrosc 23:132–139CrossRefGoogle Scholar
  7. 7.
    Hatsushika D, Muneta T, Horie M, Koga H, Tsuji K, Sekiya I (2013) Intraarticular injection of synovial stem cells promotes meniscal regeneration in a rabbit massive meniscal defect model. J Orthop Res 31:1354–1359CrossRefGoogle Scholar
  8. 8.
    Hatsushika D, Muneta T, Nakamura T, Horie M, Koga H, Nakagawa Y, Tsuji K, Hishikawa S, Kobayashi E, Sekiya I (2014) Repetitive allogeneic intraarticular injections of synovial mesenchymal stem cells promote meniscus regeneration in a porcine massive meniscus defect model. Osteoarthr Cartil 22:941–950CrossRefGoogle Scholar
  9. 9.
    Jonsson H, Riklund-Ahlstrom K, Lind J (2004) Positive pivot shift after ACL reconstruction predicts later osteoarthrosis: 63 patients followed 5–9 years after surgery. Acta Orthop Scand 75:594–599CrossRefGoogle Scholar
  10. 10.
    Kamien PM, Hydrick JM, Replogle WH, Go LT, Barrett GR (2013) Age, graft size, and Tegner activity level as predictors of failure in anterior cruciate ligament reconstruction with hamstring autograft. Am J Sports Med 41:1808–1812CrossRefGoogle Scholar
  11. 11.
    Keklikci K, Yapici C, Kim D, Linde-Rosen M, Smolinski P, Fu FH (2013) The effect of notchplasty in anterior cruciate ligament reconstruction: a biomechanical study in the porcine knee. Knee Surg Sports Traumatol Arthrosc 21:1915–1921CrossRefGoogle Scholar
  12. 12.
    Kijowski R, Woods MA, McGuine TA, Wilson JJ, Graf BK, De Smet AA (2011) Arthroscopic partial meniscectomy: MR imaging for prediction of outcome in middle-aged and elderly patients. Radiology 259:203–212CrossRefGoogle Scholar
  13. 13.
    Kittl C, El-Daou H, Athwal KK, Gupte CM, Weiler A, Williams A, Amis AA (2016) The role of the anterolateral structures and the ACL in controlling laxity of the intact and ACL-deficient knee. Am J Sports Med 44:345–354CrossRefGoogle Scholar
  14. 14.
    Kocher MS, Steadman JR, Briggs K, Zurakowski D, Sterett WI, Hawkins RJ (2002) Determinants of patient satisfaction with outcome after anterior cruciate ligament reconstruction. J Bone Jt Surg Am 84-A:1560–1572CrossRefGoogle Scholar
  15. 15.
    Koga H, Muneta T, Watanabe T, Mochizuki T, Horie M, Nakamura T, Otabe K, Nakagawa Y, Sekiya I (2016) Two-year outcomes after arthroscopic lateral meniscus centralization. Arthroscopy 32:2000–2008CrossRefGoogle Scholar
  16. 16.
    Koga H, Muneta T, Yagishita K, Watanabe T, Mochizuki T, Horie M, Nakamura T, Okawa A, Sekiya I (2012) Arthroscopic centralization of an extruded lateral meniscus. Arthrosc Tech 1:e209–e212CrossRefGoogle Scholar
  17. 17.
    Koga H, Nakamae A, Shima Y, Iwasa J, Myklebust G, Engebretsen L, Bahr R, Krosshaug T (2010) Mechanisms for noncontact anterior cruciate ligament injuries: knee joint kinematics in 10 injury situations from female team handball and basketball. Am J Sports Med 38:2218–2225CrossRefGoogle Scholar
  18. 18.
    Koga H, Watanabe T, Horie M, Katagiri H, Otabe K, Ohara T, Katakura M, Sekiya I, Muneta T (2017) Augmentation of the pullout repair of a medial meniscus posterior root tear by arthroscopic centralization. Arthrosc Tech 6:e1335–e1339CrossRefGoogle Scholar
  19. 19.
    Kondo T, Muneta T, Fukui T (2017) Evaluation of the relationship between the static measurement of transverse arch flexibility of the forefoot and gait parameters in healthy subjects. J Phys Ther Sci 29:413–418CrossRefGoogle Scholar
  20. 20.
    LaPrade RF, LaPrade CM, Ellman MB, Turnbull TL, Cerminara AJ, Wijdicks CA (2015) Cyclic displacement after meniscal root repair fixation: a human biomechanical evaluation. Am J Sports Med 43:892–898CrossRefGoogle Scholar
  21. 21.
    Lee DH, Kim JM, Lee BS, Kim KA, Bin SI (2012) Greater axial trough obliquity increases the risk of graft extrusion in lateral meniscus allograft transplantation. Am J Sports Med 40:1597–1605CrossRefGoogle Scholar
  22. 22.
    Minami T, Muneta T, Sekiya I, Watanabe T, Mochizuki T, Horie M, Katagiri H, Otabe K, Ohara T, Katakura M, Koga H (2017) Lateral meniscus posterior root tear contributes to anterolateral rotational instability and meniscus extrusion in anterior cruciate ligament-injured patients. Knee Surg Sports Traumatol Arthrosc 26:1174–1181Google Scholar
  23. 23.
    Monaco E, Ferretti A, Labianca L, Maestri B, Speranza A, Kelly MJ, D’Arrigo C (2012) Navigated knee kinematics after cutting of the ACL and its secondary restraint. Knee Surg Sports Traumatol Arthrosc 20:870–877CrossRefGoogle Scholar
  24. 24.
    Musahl V, Citak M, O’Loughlin PF, Choi D, Bedi A, Pearle AD (2010) The effect of medial versus lateral meniscectomy on the stability of the anterior cruciate ligament-deficient knee. Am J Sports Med 38:1591–1597CrossRefGoogle Scholar
  25. 25.
    Nakagawa Y, Muneta T, Kondo S, Mizuno M, Takakuda K, Ichinose S, Tabuchi T, Koga H, Tsuji K, Sekiya I (2015) Synovial mesenchymal stem cells promote healing after meniscal repair in microminipigs. Osteoarthr Cartil 23:1007–1017CrossRefGoogle Scholar
  26. 26.
    Nikolic D (1998) Lateral meniscal tears and their evolution in acute injuries of the anterior cruciate ligament of the knee. Arthroscopic analysis. Knee Surg Sports Traumatol Arthrosc 6:26–30CrossRefGoogle Scholar
  27. 27.
    Ozeki N, Muneta T, Kawabata K, Koga H, Nakagawa Y, Saito R, Udo M, Yanagisawa K, Ohara T, Mochizuki T, Tsuji K, Saito T, Sekiya I (2017) Centralization of extruded medial meniscus delays cartilage degeneration in rats. J Orthop Sci 22:542–548CrossRefGoogle Scholar
  28. 28.
    Rosso F, Bisicchia S, Bonasia DE, Amendola A (2015) Meniscal allograft transplantation: a systematic review. Am J Sports Med 43:998–1007CrossRefGoogle Scholar
  29. 29.
    Sakane M, Fox RJ, Woo SL, Livesay GA, Li G, Fu FH (1997) In situ forces in the anterior cruciate ligament and its bundles in response to anterior tibial loads. J Orthop Res 15:285–293CrossRefGoogle Scholar
  30. 30.
    Shaffer B, Kennedy S, Klimkiewicz J, Yao L (2000) Preoperative sizing of meniscal allografts in meniscus transplantation. Am J Sports Med 28:524–533CrossRefGoogle Scholar
  31. 31.
    Shi D, Zhou J, Yapici C, Linde-Rosen M, Smolinski P, Fu FH (2015) Effect of graft fixation sequence on knee joint biomechanics in double-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 23:655–660CrossRefGoogle Scholar
  32. 32.
    Shybut TB, Vega CE, Haddad J, Alexander JW, Gold JE, Noble PC, Lowe WR (2015) Effect of lateral meniscal root tear on the stability of the anterior cruciate ligament-deficient knee. Am J Sports Med 43:905–911CrossRefGoogle Scholar
  33. 33.
    Smith NA, MacKay N, Costa M, Spalding T (2015) Meniscal allograft transplantation in a symptomatic meniscal deficient knee: a systematic review. Knee Surg Sports Traumatol Arthrosc 23:270–279CrossRefGoogle Scholar
  34. 34.
    Surer L, Michail K, Koken M, Yapici C, Zhu J, Marshall BD, Linde MA, Smolinski P, Fu FH (2016) The effect of anterior cruciate ligament graft rotation on knee biomechanics. Knee Surg Sports Traumatol Arthrosc 25:1093–1110CrossRefGoogle Scholar
  35. 35.
    Takroni T, Laouar L, Adesida A, Elliott JA, Jomha NM (2016) Anatomical study: comparing the human, sheep and pig knee meniscus. J Exp Orthop 3:35CrossRefGoogle Scholar
  36. 36.
    Verdonk PC, Verstraete KL, Almqvist KF, De Cuyper K, Veys EM, Verbruggen G, Verdonk R (2006) Meniscal allograft transplantation: long-term clinical results with radiological and magnetic resonance imaging correlations. Knee Surg Sports Traumatol Arthrosc 14:694–706CrossRefGoogle Scholar
  37. 37.
    Yagi M, Wong EK, Kanamori A, Debski RE, Fu FH, Woo SL (2002) Biomechanical analysis of an anatomic anterior cruciate ligament reconstruction. Am J Sports Med 30:660–666CrossRefGoogle Scholar

Copyright information

© European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2019

Authors and Affiliations

  1. 1.Department of Orthopaedic SurgeryUniversity of PittsburghPittsburghUSA
  2. 2.Department of Joint Surgery and Sports MedicineTokyo Medical and Dental UniversityTokyoJapan
  3. 3.Department of Mechanical Engineering and Material ScienceUniversity of PittsburghPittsburghUSA
  4. 4.Department of Orthopaedic SurgeryNational Hospital Organization Disaster Medical CenterTokyoJapan

Personalised recommendations