Skip to main content


Log in

Vancomycin pre-soaking of the graft reduces postoperative infection rate without increasing risk of graft failure and arthrofibrosis in ACL reconstruction

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope



To investigate whether pre-soaking the graft in vancomycin during anterior cruciate ligament reconstruction (ACLR) reduces the postoperative infection rate and if this technique is associated with an increased rate of complications, including graft failure or arthrofibrosis.


A retrospective review of a prospective database was performed in 1779 patients who underwent ACLR over a period of 5 years, analysing the rate of postoperative deep knee infection. Group 1 and 2 both received perioperative IV antibiotics, while only group 2 underwent ACLR with grafts pre-soaked in a 5 mg/ml vancomycin solution. To analyse possible side effects associated with vancomycin use, 500 patients out of the overall study population (100 patients per year) were randomly selected and retrospectively interviewed for further postoperative complications including graft failure and arthrofibrosis as well as subjective evaluation of their knee by completing the IKDC form with a minimum mean follow-up of 37 months.


In group 1, 22 out of 926 (2%) patients suffered a postoperative deep knee infection. In contrast, there were no postoperative infections in the second group of 853 patients (0%). 16 of 22 infections (73%) were caused by coagulase-negative Staphylococcus. Statistical analysis revealed a significantly reduced postoperative infection rate when bathing the autograft in vancomycin (p < 0.01). Analysis of the random sample revealed a significant decrease of graft failure with 8 reruptures in 257 patients (3%) in the vancomycin group compared to 16 cases of graft failure in 167 patients (10%) in the control group (p < 0.05). No differences were found in the rate of postoperative arthrofibrosis, Tegner or subjective outcome scores.


Prophylactic vancomycin pre-soaking of autografts during ACLR appears to be a viable, cost-effective and safe option to reduce the rate of deep infection compared to systemic antibiotics alone.

Level of evidence


This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others



Anterior cruciate ligament reconstruction


Coagulase-negative Staphylococcus


Minimum inhibitory concentration








Quadriceps tendon


  1. Ahn JH, Lee SH (2016) Risk factors for knee instability after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 24:2936–2942

    Article  PubMed  Google Scholar 

  2. Antoci V Jr, Adams CS, Hickok NJ, Shapiro IM, Parvizi J (2007) Antibiotics for local delivery systems cause skeletal cell toxicity in vitro. Clin Orthop Relat Res 462:200–206

    Article  PubMed  Google Scholar 

  3. Badran MA, Moemen DM (2016) Hamstring graft bacterial contamination during anterior cruciate ligament reconstruction: clinical and microbiological study. Int Orthop 40:1899–1903

    Article  PubMed  Google Scholar 

  4. Barker JU, Drakos MC, Maak TG, Warren RF, Williams RJ III, Allen AA (2010) Effect of graft selection on the incidence of postoperative infection in anterior cruciate ligament reconstruction. Am J Sports Med 38:281–286

    Article  PubMed  Google Scholar 

  5. Caroom C, Tullar JM, Benton EG Jr, Jones JR, Chaput CD (2013) Intrawound vancomycin powder reduces surgical site infections in posterior cervical fusion. Spine (Phila Pa 1976) 38:1183–1187

    Article  Google Scholar 

  6. Conte EJ, Hyatt AE, Gatt CJ Jr, Dhawan A (2014) Hamstring autograft size can be predicted and is a potential risk factor for anterior cruciate ligament reconstruction failure. Arthroscopy 30:882–890

    Article  PubMed  Google Scholar 

  7. Diaz R, Afreixo V, Ramalheira E, Rodrigues C, Gago B (2018) Evaluation of vancomycin MIC creep in methicillin-resistant Staphylococcus aureus infections—a systematic review and meta-analysis. Clin Microbiol Infect 24:97–104

    Article  CAS  PubMed  Google Scholar 

  8. Edin ML, Miclau T, Lester GE, Lindsey RW, Dahners LE (1996) Effect of cefazolin and vancomycin on osteoblasts in vitro. Clin Orthop Relat Res 333:245–251

    Article  Google Scholar 

  9. Ekhtiari S, Horner NS, de Sa D, Simunovic N, Hirschmann MT, Ogilvie R et al (2017) Arthrofibrosis after ACL reconstruction is best treated in a step-wise approach with early recognition and intervention: a systematic review. Knee Surg Sports Traumatol Arthrosc 25:3929–3937

    Article  PubMed  Google Scholar 

  10. Eriksson K, Karlsson J (2016) Local vancomycin in ACL reconstruction: a modern rationale (2016) for morbidity prevention and patient safety. Knee Surg Sports Traumatol Arthrosc 24:2721–2723

    Article  PubMed  Google Scholar 

  11. Grayson JE, Grant GD, Dukie S, Vertullo CJ (2011) The in vitro elution characteristics of vancomycin from tendons. Clin Orthop Relat Res 469:2948–2952

    Article  PubMed  PubMed Central  Google Scholar 

  12. Greis PE, Koch BS, Adams B (2012) Tibialis anterior or posterior allograft anterior cruciate ligament reconstruction versus hamstring autograft reconstruction: an economic analysis in a hospital-based outpatient setting. Arthroscopy 28:1695–1701

    Article  PubMed  Google Scholar 

  13. Ho PL, Lo PY, Chow KH, Lau EH, Lai EL, Cheng VC et al (2010) Vancomycin MIC creep in MRSA isolates from 1997 to 2008 in a healthcare region in Hong Kong. J Infect 60:140–145

    Article  PubMed  Google Scholar 

  14. Horneff JG III, Hsu JE, Voleti PB, O’Donnell J, Huffman GR (2015) Propionibacterium acnes infection in shoulder arthroscopy patients with postoperative pain. J Shoulder Elb Surg 24:838–843

    Article  Google Scholar 

  15. Irrgang JJ, Anderson AF, Boland AL, Harner CD, Kurosaka M, Neyret P et al (2001) Development and validation of the international knee documentation committee subjective knee form. Am J Sports Med 29:600–613

    Article  CAS  PubMed  Google Scholar 

  16. Judd D, Bottoni C, Kim D, Burke M, Hooker S (2006) Infections following arthroscopic anterior cruciate ligament reconstruction. Arthroscopy 22:375–384

    Article  PubMed  Google Scholar 

  17. Kanj WW, Flynn JM, Spiegel DA, Dormans JP, Baldwin KD (2013) Vancomycin prophylaxis of surgical site infection in clean orthopedic surgery. Orthopedics 36:138–146

    Article  PubMed  Google Scholar 

  18. Kartus J, Magnusson L, Stener S, Brandsson S, Eriksson BI, Karlsson J (1999) Complications following arthroscopic anterior cruciate ligament reconstruction. A 2–5-year follow-up of 604 patients with special emphasis on anterior knee pain. Knee Surg Sports Traumatol Arthrosc 7:2–8

    Article  CAS  PubMed  Google Scholar 

  19. Kehrmann J, Kaase M, Szabados F, Gatermann SG, Buer J, Rath PM et al (2011) Vancomycin MIC creep in MRSA blood culture isolates from Germany: a regional problem? Eur J Clin Microbiol Infect Dis 30:677–683

    Article  CAS  PubMed  Google Scholar 

  20. Kieser TM, Rose MS, Aluthman U, Montgomery M, Louie T, Belenkie I (2014) Toward zero: deep sternal wound infection after 1001 consecutive coronary artery bypass procedures using arterial grafts: implications for diabetic patients. J Thorac Cardiovasc Surg 148:1887–1895

    Article  PubMed  Google Scholar 

  21. Maletis GB, Inacio MC, Funahashi TT (2013) Analysis of 16,192 anterior cruciate ligament reconstructions from a community-based registry. Am J Sports Med 41:2090–2098

    Article  PubMed  Google Scholar 

  22. Maletis GB, Inacio MC, Reynolds S, Desmond JL, Maletis MM, Funahashi TT (2013) Incidence of postoperative anterior cruciate ligament reconstruction infections: graft choice makes a difference. Am J Sports Med 41:1780–1785

    Article  PubMed  Google Scholar 

  23. Mariappan R, Manninen P, Massicotte EM, Bhatia A (2013) Circulatory collapse after topical application of vancomycin powder during spine surgery. J Neurosurg Spine 19:381–383

    Article  PubMed  Google Scholar 

  24. Mouzopoulos G, Fotopoulos VC, Tzurbakis M (2009) Septic knee arthritis following ACL reconstruction: a systematic review. Knee Surg Sports Traumatol Arthrosc 17:1033–1042

    Article  PubMed  Google Scholar 

  25. Perez-Prieto D, Portillo ME, Torres-Claramunt R, Pelfort X, Hinarejos P, Monllau JC (2018) Contamination occurs during ACL graft harvesting and manipulation, but it can be easily eradicated. Knee Surg Sports Traumatol Arthrosc 26:558–562

    Article  PubMed  Google Scholar 

  26. Perez-Prieto D, Torres-Claramunt R, Gelber PE, Shehata TM, Pelfort X, Monllau JC (2016) Autograft soaking in vancomycin reduces the risk of infection after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 24:2724–2728

    Article  PubMed  Google Scholar 

  27. Phegan M, Grayson JE, Vertullo CJ (2016) No infections in 1300 anterior cruciate ligament reconstructions with vancomycin pre-soaking of hamstring grafts. Knee Surg Sports Traumatol Arthrosc 24:2729–2735

    Article  PubMed  Google Scholar 

  28. Plante MJ, Li X, Scully G, Brown MA, Busconi BD, DeAngelis NA (2013) Evaluation of sterilization methods following contamination of hamstring autograft during anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 21:696–701

    Article  PubMed  Google Scholar 

  29. Salmon L, Russell V, Musgrove T, Pinczewski L, Refshauge K (2005) Incidence and risk factors for graft rupture and contralateral rupture after anterior cruciate ligament reconstruction. Arthroscopy 21:948–957

    Article  PubMed  Google Scholar 

  30. Sechriest VF II, Carney JR, Kuskowski MA, Haffner JL, Mullen MJ, Covey DC (2013) Incidence of knee sepsis after ACL reconstruction at one institution: the impact of a clinical pathway. J Bone Jt Surg Am 95:843–849 (S841-846)

    Article  Google Scholar 

  31. Shields MV, Abdullah L, Namdari S (2016) The challenge of Propionibacterium acnes and revision shoulder arthroplasty: a review of current diagnostic options. J Shoulder Elb Surg 25:1034–1040

    Article  Google Scholar 

  32. Tegner Y, Lysholm J (1985) Rating systems in the evaluation of knee ligament injuries. Clin Orthop Relat Res 198:43–49

    Google Scholar 

  33. Tomczak H, Szalek E, Blazejewska W, Myczko K, Horla A, Grzeskowiak E (2013) The need to assay the real MIC when making the decision to eradicate Staphylococcus aureus with vancomycin. Postepy Hig Med Dosw 67:921–925

    Article  Google Scholar 

  34. Torres-Claramunt R, Gelber P, Pelfort X, Hinarejos P, Leal-Blanquet J, Perez-Prieto D et al (2016) Managing septic arthritis after knee ligament reconstruction. Int Orthop 40:607–614

    Article  PubMed  Google Scholar 

  35. Trampuz A, Zimmerli W (2006) Antimicrobial agents in orthopaedic surgery: prophylaxis and treatment. Drugs 66:1089–1105

    Article  CAS  PubMed  Google Scholar 

  36. van Yperen DT, Reijman M, van Es EM, Bierma-Zeinstra SMA, Meuffels DE (2018) Twenty-year follow-up study comparing operative versus nonoperative treatment of anterior cruciate ligament ruptures in high-level athletes. Am J Sports Med.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Vertullo CJ, Quick M, Jones A, Grayson JE (2012) A surgical technique using presoaked vancomycin hamstring grafts to decrease the risk of infection after anterior cruciate ligament reconstruction. Arthroscopy 28:337–342

    Article  PubMed  Google Scholar 

  38. Wang G, Hindler JF, Ward KW, Bruckner DA (2006) Increased vancomycin MICs for Staphylococcus aureus clinical isolates from a university hospital during a 5-year period. J Clin Microbiol 44:3883–3886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Whiteside LA, Peppers M, Nayfeh TA, Roy ME (2011) Methicillin-resistant Staphylococcus aureus in TKA treated with revision and direct intra-articular antibiotic infusion. Clin Orthop Relat Res 469:26–33

    Article  PubMed  Google Scholar 

  40. Wiggins AJ, Grandhi RK, Schneider DK, Stanfield D, Webster KE, Myer GD (2016) Risk of secondary injury in younger athletes after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Am J Sports Med 44:1861–1876

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yan H, He J, Chen S, Yu S, Fan C (2014) Intrawound application of vancomycin reduces wound infection after open release of post-traumatic stiff elbows: a retrospective comparative study. J Shoulder Elb Surg 23:686–692

    Article  CAS  Google Scholar 

Download references


The authors gratefully acknowledge Nate Breznau and Ajay C. Kanakamedala for language editing.


The authors did not receive any funding for the study.

Author information

Authors and Affiliations



JH performed the surgeries on all patients. MB and CO were assisting in surgeries and examining the patients and evaluating them clinically during follow-up. JH, MB, and CO developed the study design. JuHe, MG and SB did the patient interviews and helped analysing and interpreting literature and data. CO and JuHe performed the literature review and wrote the manuscript. CO did the statistical analysis. JH and MB were proof reading the manuscript and revising it critically. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Jürgen Höher.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Institutional ethics committee approval was obtained prior to the start of this study (University Witten/Herdecke; ID: 1792015).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Offerhaus, C., Balke, M., Hente, J. et al. Vancomycin pre-soaking of the graft reduces postoperative infection rate without increasing risk of graft failure and arthrofibrosis in ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 27, 3014–3021 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: