Biomechanical considerations are crucial for the success of tendon and meniscus allograft integration—a systematic review

  • Andreas M. SeitzEmail author
  • Lutz Dürselen



This systematic review intends to give an overview of the current knowledge on how allografts used for the reconstruction of cruciate ligaments and menisci are integrated and specifically perform regarding their biomechanical function.


Two reviewers reviewed the PubMed and Central Cochrane library with focus on the biomechanical integration of tendon ligament and meniscus allografts. The literature search was conducted in accordance with the PRISMA statement for reporting systematic reviews and meta-analyses.


The analysed literature on tendon allografts shows that they are more vulnerable to overstretching in the phase of degradation compared to autografts as the revascularization process starts later and takes longer. Therefore, to avoid excessive graft loads, allografts for cruciate ligament replacement should be selected that exhibit much higher failure loads than the native ligaments to counteract the detrimental effect of degradation. Further, placement techniques should be considered that result in a minimum of strain differences during knee joint motion, which is best achieved by near-isometric placement. The most important biomechanical parameters for meniscus allograft transplantation are secure fixation and proper graft sizing. Allograft attachment by bone plugs or by a bone block is superior to circumferential suturing and enables the allograft to restore the chondroprotective biomechanical function. Graft sizing is also of major relevance, because too small grafts are not able to compensate the knee joint incongruity and too large grafts may fail due to extrusion. Only adequate sizing and fixation together can lead to a biomechanically functioning allograft. The objective assessment of the biomechanical quality of allografts in a clinical setting is challenging, but would be highly desirable for monitoring the remodelling and incorporation process.


Currently, indicators like ap-stability after ACL reconstruction or meniscal extrusion represent only indirect measures for biomechanical graft integration. These parameters are at best clinical indicators of allograft function, but the overall integration properties comprising e.g. fixation and graft stiffness remain unknown. Therefore, future research should e.g. focus on advanced imaging techniques or other non-invasive methods allowing for in vivo assessment of biomechanical allograft properties.


Allograft Autograft Tendon Ligament Meniscus Biomechanics Integration Degradation Review 



No funding was required for this study.

Compliance with ethical standards

Conflict of interest

None of the authors declare that they have any conflict of interest related to this work.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Supplementary material

167_2018_5185_MOESM1_ESM.docx (14 kb)
Supplementary material 1 (DOCX 13 KB)
167_2018_5185_MOESM2_ESM.docx (14 kb)
Supplementary material 2 (DOCX 13 KB)


  1. 1.
    Aagaard H, Jorgensen U, Bojsen-Moller F (2003) Immediate versus delayed meniscal allograft transplantation in sheep. Clin Orthop Relat Res 406:218–227CrossRefGoogle Scholar
  2. 2.
    Aagaard H, Jorgensen U, Bojsen-Moller F (1999) Reduced degenerative articular cartilage changes after meniscal allograft transplantation in sheep. Knee Surg Sports Traumatol Arthrosc 7:184–191PubMedCrossRefGoogle Scholar
  3. 3.
    Ahmad S, Singh VA, Hussein SI (2017) Cryopreservation versus fresh frozen meniscal allograft: a biomechanical comparative analysis. J Orthop Surg (Hong Kong) 25(3):1–7CrossRefGoogle Scholar
  4. 4.
    Alhalki MM, Howell SM, Hull ML (1999) How three methods for fixing a medial meniscal autograft affect tibial contact mechanics. Am J Sports Med 27:320–328PubMedCrossRefGoogle Scholar
  5. 5.
    Alhalki MM, Hull ML, Howell SM (2000) Contact mechanics of the medial tibial plateau after implantation of a medial meniscal allograft. A human cadaveric study. Am J Sports Med 28:370–376PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Almqvist KF, Jan H, Vercruysse C, Verbeeck R, Verdonk R (2007) The tibialis tendon as a valuable anterior cruciate ligament allograft substitute: biomechanical properties. Knee Surg Sports Traumatol Arthrosc 15:1326–1330PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Baer GS, Harner CD (2007) Clinical outcomes of allograft versus autograft in anterior cruciate ligament reconstruction. Clin Sports Med 26:661–681PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Baldini T, Caperton K, Hawkins M, McCarty E (2016) Effect of a novel sterilization method on biomechanical properties of soft tissue allografts. Knee Surg Sports Traumatol Arthrosc 24:3971–3975PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Beynnon BD, Johnson RJ (1996) Anterior cruciate ligament injury rehabilitation in athletes. Biomechanical considerations. Sports Med 22:54–64PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Birch HL, Thorpe CT, Rumian AP (2013) Specialisation of extracellular matrix for function in tendons and ligaments. Muscles Ligaments Tendons J 3:12–22PubMedPubMedCentralGoogle Scholar
  11. 11.
    Blevins FT, Hecker AT, Bigler GT, Boland AL, Hayes WC (1994) The effects of donor age and strain rate on the biomechanical properties of bone-patellar tendon-bone allografts. Am J Sports Med 22:328–333PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Boguszewski DV, Wagner CT, Butler DL, Shearn JT (2015) Effect of ACL graft material on anterior knee force during simulated in vivo ovine motion applied to the porcine knee: an in vitro examination of force during 2000 cycles. J Orthop Res 33:1789–1795PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Boguszewski DV, Wagner CT, Butler DL, Shearn JT (2014) Effect of ACL graft material on joint forces during a simulated in vivo motion in the porcine knee: examining force during the initial cycles. J Orthop Res 32:1458–1463PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Bosch U, Decker B, Kasperczyk W, Nerlich A, Oestern HJ, Tscherne H (1992) The relationship of mechanical properties to morphology in patellar tendon autografts after posterior cruciate ligament replacement in sheep. J Biomech 25:821–830PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Butler DL, Grood ES, Noyes FR, Olmstead ML, Hohn RB, Arnoczky SP et al (1989) Mechanical properties of primate vascularized vs. nonvascularized patellar tendon grafts; changes over time. J Orthop Res 7:68–79PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Chen L, Wu Y, Yu J, Jiao Z, Ao Y, Yu C et al (2011) Effect of repeated freezing-thawing on the Achilles tendon of rabbits. Knee Surg Sports Traumatol Arthrosc 19:1028–1034PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Colaco HB, Lord BR, Back DL, Davies AJ, Amis AA, Ajuied A (2017) Biomechanical properties of bovine tendon xenografts treated with a modern processing method. J Biomech 53:144–147PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Cole BJ, Dennis MG, Lee SJ, Nho SJ, Kalsi RS, Hayden JK et al (2006) Prospective evaluation of allograft meniscus transplantation: a minimum 2-year follow-up. Am J Sports Med 34:919–927PubMedCrossRefGoogle Scholar
  19. 19.
    Cummins JF, Mansour JN, Howe Z, Allan DG (1997) Meniscal transplantation and degenerative articular change: an experimental study in the rabbit. Arthroscopy 13:485–491PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Curran AR, Adams DJ, Gill JL, Steiner ME, Scheller AD (2004) The biomechanical effects of low-dose irradiation on bone-patellar tendon-bone allografts. Am J Sports Med 32:1131–1135PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Delcroix GJ, Kaimrajh DN, Baria D, Cooper S, Reiner T, Latta L et al (2013) Histologic, biomechanical, and biological evaluation of fan-folded iliotibial band allografts for anterior cruciate ligament reconstruction. Arthroscopy 29:756–765PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    DiBartola AC, Everhart JS, Kaeding CC, Magnussen RA, Flanigan DC (2016) Maximum load to failure of high dose versus low dose gamma irradiation of anterior cruciate ligament allografts: a meta-analysis. Knee 23:755–762PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Dienst M, Greis PE, Ellis BJ, Bachus KN, Burks RT (2007) Effect of lateral meniscal allograft sizing on contact mechanics of the lateral tibial plateau: an experimental study in human cadaveric knee joints. Am J Sports Med 35:34–42PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Dustmann M, Schmidt T, Gangey I, Unterhauser FN, Weiler A, Scheffler SU (2008) The extracellular remodeling of free-soft-tissue autografts and allografts for reconstruction of the anterior cruciate ligament: a comparison study in a sheep model. Knee Surg Sports Traumatol Arthrosc 16:360–369PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Elliott DM, Jones R 3rd, Setton LA, Scully SP, Vail TP, Guilak F (2002) Joint degeneration following meniscal allograft transplantation in a canine model: mechanical properties and semiquantitative histology of articular cartilage. Knee Surg Sports Traumatol Arthrosc 10:109–118PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Farmer JM, Lee CA, Curl WW, Martin DF, Kortesis B, Poehling GG (2006) Initial biomechanical properties of staple-anchor Achilles tendon allograft and interference screw bone-patellar tendon-bone autograft fixation for anterior cruciate ligament reconstruction in a cadaveric model. Arthroscopy 22:1040–1045PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Flahiff CM, Brooks AT, Hollis JM, Vander Schilden JL, Nicholas RW (1995) Biomechanical analysis of patellar tendon allografts as a function of donor age. Am J Sports Med 23:354–358PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Fleming BC, Spindler KP, Palmer MP, Magarian EM, Murray MM (2009) Collagen-platelet composites improve the biomechanical properties of healing anterior cruciate ligament grafts in a porcine model. Am J Sports Med 37:1554–1563PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Forsythe B, Haro MS, Bogunovic L, Collins MJ, Arns TA, Trella KJ et al (2016) Biomechanical evaluation of posterior cruciate ligament reconstruction with quadriceps versus Achilles tendon bone block allograft. Orthop J Sports Med 4(8):1–8Google Scholar
  30. 30.
    Freutel M, Galbusera F, Ignatius A, Durselen L (2015) Material properties of individual menisci and their attachments obtained through inverse FE-analysis. J Biomech 48:1343–1349PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Freutel M, Seitz AM, Galbusera F, Bornstedt A, Rasche V, Knothe Tate ML et al (2014) Medial meniscal displacement and strain in three dimensions under compressive loads: MR assessment. J Magn Reson Imaging 40:1181–1188PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Gagliano N, Menon A, Cabitza F, Compagnoni R, Randelli P (2018) Morphological and molecular characterization of human hamstrings shows that tendon features are not influenced by donor age. Knee Surg Sports Traumatol Arthrosc 26:343–352PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Gill TJ, DeFrate LE, Wang C, Carey CT, Zayontz S, Zarins B et al (2004) The effect of posterior cruciate ligament reconstruction on patellofemoral contact pressures in the knee joint under simulated muscle loads. Am J Sports Med 32:109–115PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Giuliani JR, Burns TC, Svoboda SJ, Cameron KL, Owens BD (2011) Treatment of meniscal injuries in young athletes. J Knee Surg 24:93–100PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Greaves LL, Hecker AT, Brown CH Jr (2008) The effect of donor age and low-dose gamma irradiation on the initial biomechanical properties of human tibialis tendon allografts. Am J Sports Med 36:1358–1366PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Hame SL, Markolf KL, Gabayan AJ, Hunter DM, Davis B, Shapiro MS (2002) The effect of anterior cruciate ligament graft rotation on knee laxity and graft tension: an in vitro biomechanical analysis. Arthroscopy 18:55–60PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Hangody G, Szebenyi G, Abonyi B, Kiss R, Hangody L, Pap K (2017) Does a different dose of gamma irradiation have the same effect on five different types of tendon allografts?—a biomechanical study. Int Orthop 41:357–365PubMedCrossRefGoogle Scholar
  38. 38.
    Haut Donahue TL, Howell SM, Hull ML, Gregersen C (2002) A biomechanical evaluation of anterior and posterior tibialis tendons as suitable single-loop anterior cruciate ligament grafts. Arthroscopy 18:589–597PubMedCrossRefGoogle Scholar
  39. 39.
    Henson J, Nyland J, Chang HC, Caborn DN (2009) Effect of cryoprotectant incubation time on handling properties of allogeneic tendons prepared for knee ligament reconstruction. J Biomater Appl 24:343–352PubMedCrossRefGoogle Scholar
  40. 40.
    Hoburg A, Keshlaf S, Schmidt T, Smith M, Gohs U, Perka C et al (2011) Fractionation of high-dose electron beam irradiation of BPTB grafts provides significantly improved viscoelastic and structural properties compared to standard gamma irradiation. Knee Surg Sports Traumatol Arthrosc 19:1955–1961PubMedCrossRefGoogle Scholar
  41. 41.
    Hoburg AT, Keshlaf S, Schmidt T, Smith M, Gohs U, Perka C et al (2010) Effect of electron beam irradiation on biomechanical properties of patellar tendon allografts in anterior cruciate ligament reconstruction. Am J Sports Med 38:1134–1140PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Huston P, Moher D (1996) Redundancy, disaggregation, and the integrity of medical research. Lancet 347:1024–1026PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Jackson DW, Grood ES, Goldstein JD, Rosen MA, Kurzweil PR, Cummings JF et al (1993) A comparison of patellar tendon autograft and allograft used for anterior cruciate ligament reconstruction in the goat model. Am J Sports Med 21:176–185PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Jones DB, Huddleston PM, Zobitz ME, Stuart MJ (2007) Mechanical properties of patellar tendon allografts subjected to chemical sterilization. Arthroscopy 23:400–404PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Kang RW, Lattermann C, Cole BJ (2006) Allograft meniscus transplantation: background, indications, techniques, and outcomes. J Knee Surg 19:220–230PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Kelly BT, Potter HG, Deng XH, Pearle AD, Turner AS, Warren RF et al (2006) Meniscal allograft transplantation in the sheep knee: evaluation of chondroprotective effects. Am J Sports Med 34:1464–1477PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Kennedy NI, LaPrade RF, Goldsmith MT, Faucett SC, Rasmussen MT, Coatney GA et al (2014) Posterior cruciate ligament graft fixation angles, part 2: biomechanical evaluation for anatomic double-bundle reconstruction. Am J Sports Med 42:2346–2355PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Khetia EA, McKeon BP (2007) Meniscal allografts: biomechanics and techniques. Sports Med Arthrosc Rev 15:114–120PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Kim JG, Lee YS, Bae TS, Ha JK, Lee DH, Kim YJ et al (2013) Tibiofemoral contact mechanics following posterior root of medial meniscus tear, repair, meniscectomy, and allograft transplantation. Knee Surg Sports Traumatol Arthrosc 21:2121–2125PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Kocabey Y, Klein S, Nyland J, Caborn D (2004) Tibial fixation comparison of semitendinosus-bone composite allografts fixed with bioabsorbable screws and bone-patella tendon-bone grafts fixed with titanium screws. Knee Surg Sports Traumatol Arthrosc 12:88–93PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Kousa P, Jarvinen TL, Vihavainen M, Kannus P, Jarvinen M (2003) The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction. Part I: femoral site. Am J Sports Med 31:174–181PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Kousa P, Jarvinen TL, Vihavainen M, Kannus P, Jarvinen M (2003) The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction. Part II: tibial site. Am J Sports Med 31:182–188PubMedCrossRefGoogle Scholar
  53. 53.
    Krupp R, Nyland J, Smith C, Nawab A, Burden R, Caborn DN (2007) Biomechanical comparison between CentraLoc and Intrafix fixation of quadrupled semitendinosus-gracilis allografts in cadaveric tibiae with low bone mineral density. Knee 14:306–313PubMedCrossRefGoogle Scholar
  54. 54.
    Lansdown DA, Riff AJ, Meadows M, Yanke AB, Bach BR Jr (2017) What factors influence the biomechanical properties of allograft tissue for ACL reconstruction? A systematic review. Clin Orthop Relat Res 475:2412–2426PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    LaPrade RF, Wills NJ, Spiridonov SI, Perkinson S (2010) A prospective outcomes study of meniscal allograft transplantation. Am J Sports Med 38:1804–1812PubMedCrossRefGoogle Scholar
  56. 56.
    Lee BS, Kim JM, Sohn DW, Bin SI (2013) Review of meniscal allograft transplantation focusing on long-term results and evaluation methods. Knee Surg Relat Res 25:1–6PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Lee SR, Kim JG, Nam SW (2012) The tips and pitfalls of meniscus allograft transplantation. Knee Surg Relat Res 24:137–145PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Li J, Kong F, Gao X, Shen Y, Gao S (2016) Prospective randomized comparison of knee stability and proprioception for posterior cruciate ligament reconstruction with autograft, hybrid graft, and gamma-irradiated allograft. Arthroscopy 32:2548–2555PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 6:e1000100PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Lord BR, Colaco HB, Gupte CM, Wilson AJ, Amis AA (2018) ACL graft compression: a method to allow reduced tunnel sizes in ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 26:2430–2437PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Lubowitz JH, Verdonk PC, Reid JB 3rd Verdonk R (2007) Meniscus allograft transplantation: a current concepts review. Knee Surg Sports Traumatol Arthrosc 15:476–492PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Mabe I, Hunter S (2014) Quadriceps tendon allografts as an alternative to Achilles tendon allografts: a biomechanical comparison. Cell Tissue Bank 15:523–529PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Markolf KL, McAllister DR, Young CR, McWilliams J, Oakes DA (2003) Biomechanical effects of medial–lateral tibial tunnel placement in posterior cruciate ligament reconstruction. J Orthop Res 21:177–182PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Markolf KL, O’Neill G, Jackson SR, McAllister DR (2003) Reconstruction of knees with combined cruciate deficiencies: a biomechanical study. J Bone Jt Surg Am 85-A:1768–1774CrossRefGoogle Scholar
  65. 65.
    Mayr HO, Stoehr A, Dietrich M, von Eisenhart-Rothe R, Hube R, Senger S et al (2012) Graft-dependent differences in the ligamentization process of anterior cruciate ligament grafts in a sheep trial. Knee Surg Sports Traumatol Arthrosc 20:947–956PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Mickiewicz P, Binkowski M, Bursig H, Wrobel Z (2014) Preservation and sterilization methods of the meniscal allografts: literature review. Cell Tissue Bank 15:307–317PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Miller SL, Gladstone JN (2002) Graft selection in anterior cruciate ligament reconstruction. Orthop Clin N Am 33:675–683CrossRefGoogle Scholar
  68. 68.
    Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6:e1000097PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Mook WR, Civitarese D, Turnbull TL, Kennedy NI, O’Brien L, Schoeberl JB et al (2017) Double-bundle posterior cruciate ligament reconstruction: a biomechanical analysis of simulated early motion and partial and full weightbearing on common reconstruction grafts. Knee Surg Sports Traumatol Arthrosc 25:2536–2544PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Muramatsu K, Hachiya Y, Izawa H (2008) Serial evaluation of human anterior cruciate ligament grafts by contrast-enhanced magnetic resonance imaging: comparison of allografts and autografts. Arthroscopy 24:1038–1044PubMedCrossRefGoogle Scholar
  71. 71.
    Narvy SJ, Hatch GF 3rd, Ihn HE, Heckmann ND, McGarry MH, Tibone JE et al (2017) Evaluating the femoral-side critical corner in posterior cruciate ligament reconstruction: the effect of outside-in versus inside-out creation of femoral tunnels on graft contact pressure in a synthetic knee model. Arthroscopy 33:1370–1374PubMedCrossRefGoogle Scholar
  72. 72.
    Negrin R, Duboy J, Olavarria F, Wainer M, Jimenez H, Las Heras F et al (2016) Biomechanical and histological comparison between the cryopreserved and the lyophilized gracilis tendon allograft for MPFL reconstruction, a cadaveric experimental study. J Exp Orthop 3:20PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Nyland J, Campbell K, Kalloub A, Strauss EJ, Kuban K, Caborn DNM (2018) Medial meniscus grafting restores normal tibiofemoral contact pressures. Arch Orthop Trauma Surg 138:361–367PubMedCrossRefGoogle Scholar
  74. 74.
    Nyland J, Larsen N, Burden R, Chang H, Caborn DN (2009) Biomechanical and tissue handling property comparison of decellularized and cryopreserved tibialis anterior tendons following extreme incubation and rehydration. Knee Surg Sports Traumatol Arthrosc 17:83–91PubMedCrossRefGoogle Scholar
  75. 75.
    Paletta GA Jr, Manning T, Snell E, Parker R, Bergfeld J (1997) The effect of allograft meniscal replacement on intraarticular contact area and pressures in the human knee. A biomechanical study. Am J Sports Med 25:692–698PubMedCrossRefGoogle Scholar
  76. 76.
    Palmer JE, Russell JP, Grieshober J, Iacangelo A, Ellison BA, Lease TD et al (2017) A biomechanical comparison of allograft tendons for ligament reconstruction. Am J Sports Med 45:701–707PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Pearsall AWT, Hollis JM, Russell GV Jr, Scheer Z (2003) A biomechanical comparison of three lower extremity tendons for ligamentous reconstruction about the knee. Arthroscopy 19:1091–1096PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Prokopis PM, Schepsis AA (1999) Allograft use in ACL reconstruction. Knee 6:75–85CrossRefGoogle Scholar
  79. 79.
    Qu J, Thoreson AR, An KN, Amadio PC, Zhao C (2015) What is the best candidate allograft for ACL reconstruction? An in vitro mechanical and histologic study in a canine model. J Biomech 48:1811–1816PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Qu J, van Alphen NA, Thoreson AR, Chen Q, An KN, Amadio PC et al (2015) Effects of trypsinization and mineralization on intrasynovial tendon allograft healing to bone. J Orthop Res 33:468–474PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Rankin M, Noyes FR, Barber-Westin SD, Hushek SG, Seow A (2006) Human meniscus allografts’ in vivo size and motion characteristics: magnetic resonance imaging assessment under weightbearing conditions. Am J Sports Med 34:98–107PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Rayan F, Nanjayan SK, Quah C, Ramoutar D, Konan S, Haddad FS (2015) Review of evolution of tunnel position in anterior cruciate ligament reconstruction. World J Orthop 6:252–262PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Rijk PC (2004) Meniscal allograft transplantation—part I: background, results, graft selection and preservation, and surgical considerations. Arthroscopy 20:728–743PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Robertson A, Nutton RW, Keating JF (2006) Current trends in the use of tendon allografts in orthopaedic surgery. J Bone Jt Surg Br 88:988–992CrossRefGoogle Scholar
  85. 85.
    Rongen JJ, Hannink G, van Tienen TG, van Luijk J, Hooijmans CR (2015) The protective effect of meniscus allograft transplantation on articular cartilage: a systematic review of animal studies. Osteoarthr Cartil 23:1242–1253PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Scheffler SU, Schmidt T, Gangey I, Dustmann M, Unterhauser F, Weiler A (2008) Fresh-frozen free-tendon allografts versus autografts in anterior cruciate ligament reconstruction: delayed remodeling and inferior mechanical function during long-term healing in sheep. Arthroscopy 24:448–458PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Schmidt T, Grabau D, Grotewohl JH, Gohs U, Pruss A, Smith M et al (2017) Does sterilization with fractionated electron beam irradiation prevent ACL tendon allograft from tissue damage? Knee Surg Sports Traumatol Arthrosc 25:584–594PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Schmidt T, Hoburg A, Broziat C, Smith MD, Gohs U, Pruss A et al (2012) Sterilization with electron beam irradiation influences the biomechanical properties and the early remodeling of tendon allografts for reconstruction of the anterior cruciate ligament (ACL). Cell Tissue Bank 13:387–400PubMedCrossRefGoogle Scholar
  89. 89.
    Schwartz HE, Matava MJ, Proch FS, Butler CA, Ratcliffe A, Levy M et al (2006) The effect of gamma irradiation on anterior cruciate ligament allograft biomechanical and biochemical properties in the caprine model at time zero and at 6 months after surgery. Am J Sports Med 34:1747–1755PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Sekaran SV, Hull ML, Howell SM (2002) Nonanatomic location of the posterior horn of a medial meniscal autograft implanted in a cadaveric knee adversely affects the pressure distribution on the tibial plateau. Am J Sports Med 30:74–82PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Seto AU, Gatt CJ Jr, Dunn MG (2013) Sterilization of tendon allografts: a method to improve strength and stability after exposure to 50 kGy gamma radiation. Cell Tissue Bank 14:349–357PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Smith CK, Hull ML, Howell SM (2006) Lengthening of a single-loop tibialis tendon graft construct after cyclic loading: a study using Roentgen stereophotogrammetric analysis. J Biomech Eng 128:437–442PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Smith NA, Costa ML, Spalding T (2015) Meniscal allograft transplantation: rationale for treatment. Bone Jt J 97-B:590–594CrossRefGoogle Scholar
  94. 94.
    Smith PA, DeBerardino TM (2015) Tibial fixation properties of a continuous-loop ACL hamstring graft construct with suspensory fixation in porcine bone. J Knee Surg 28:506–512PubMedPubMedCentralGoogle Scholar
  95. 95.
    Suhodolcan L, Brojan M, Kosel F, Drobnic M, Alibegovic A, Brecelj J (2013) Cryopreservation with glycerol improves the in vitro biomechanical characteristics of human patellar tendon allografts. Knee Surg Sports Traumatol Arthrosc 21:1218–1225PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Thornton GM, Shao X, Kuchison ME, Marchuk LL, Shrive NG, Frank CB (2009) Healing ligament mechanical properties are improved by repair with interpositional allografts but not by concomitant treatment with hyaluronic acid. J Orthop Res 27:400–407PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Verdonk P, Depaepe Y, Desmyter S, De Muynck M, Almqvist KF, Verstraete K et al (2004) Normal and transplanted lateral knee menisci: evaluation of extrusion using magnetic resonance imaging and ultrasound. Knee Surg Sports Traumatol Arthrosc 12:411–419PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    von Lewinski G, Hurschler C, Allmann C, Wirth CJ (2006) The influence of pre-tensioning of meniscal transplants on the tibiofemoral contact area. Knee Surg Sports Traumatol Arthrosc 14:425–436CrossRefGoogle Scholar
  99. 99.
    von Lewinski G, Milachowski KA, Weismeier K, Kohn D, Wirth CJ (2007) Twenty-year results of combined meniscal allograft transplantation, anterior cruciate ligament reconstruction and advancement of the medial collateral ligament. Knee Surg Sports Traumatol Arthrosc 15:1072–1082CrossRefGoogle Scholar
  100. 100.
    Walz B, Nyland J, Fisher B, Krupp R, Nawab A (2012) Supplemental bio-tenodesis improves tibialis anterior allograft yield load in extremely low density tibiae. Arch Orthop Trauma Surg 132:343–347PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Wang HD, Gao SJ, Zhang YZ (2018) Comparison of clinical outcomes after anterior cruciate ligament reconstruction using a hybrid graft versus a hamstring autograft. Arthroscopy 34:1508–1516PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Wang HD, Zhu YB, Wang TR, Zhang WF, Zhang YZ (2018) Irradiated allograft versus autograft for anterior cruciate ligament reconstruction: a meta-analysis and systematic review of prospective studies. Int J Surg 49:45–55PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    West RV, Harner CD (2005) Graft selection in anterior cruciate ligament reconstruction. J Am Acad Orthop Surg 13:197–207PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Yanke A, Bell R, Lee A, Shewman EF, Wang V, Bach BR Jr (2015) Regional mechanical properties of human patellar tendon allografts. Knee Surg Sports Traumatol Arthrosc 23:961–967PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Yanke AB, Bell R, Lee AS, Shewman E, Wang VM, Bach BR Jr (2013) Central-third bone-patellar tendon-bone allografts demonstrate superior biomechanical failure characteristics compared with hemi-patellar tendon grafts. Am J Sports Med 41:2521–2526PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Yoon KH, Lee SH, Park SY, Kim HJ, Chung KY (2014) Meniscus allograft transplantation: a comparison of medial and lateral procedures. Am J Sports Med 42:200–207PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2018

Authors and Affiliations

  1. 1.Institute of Orthopaedic Research and Biomechanics, Centre for Trauma Research UlmUlm University Medical CentreUlmGermany

Personalised recommendations