Skip to main content
Log in

Incidence of second-time lateral patellar dislocation is associated with anatomic factors, age and injury patterns of medial patellofemoral ligament in first-time lateral patellar dislocation: a prospective magnetic resonance imaging study with 5-year follow-up

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

To examine the predictors of the second-time lateral patellar dislocation (LPD) in patients after acute first-time LPD in a 5-year follow-up.

Methods

Data were collected prospectively from patients after acute first-time LPD with conservative treatment. Factors included sex, age at the first-time LPD, anatomical variants [trochlear dysplasia, patellar height, tibial tuberosity–trochlear groove (TT–TG) distance], and injury patterns of medial patellofemoral ligament (MPFL) in acute first-time LPD. Logistic regression was carried out to identify the independent risk factors for the incidence of the second-time LPD.

Results

The incidence rate of a second-time LPD was 35.5% (59 of 166) in the 5-year follow-up. Univariate analysis revealed significant differences in the incidence rate of the second-time LPD among age at the first-time LPD (P = 0.04), trochlear dysplasia (P = 0.003), patella height (P = 0.017) and the TT–TG distance (P = 0.027). Risk factors for the second-time LPD were age < 18 years at the first-time LPD [odds ratio (OR) 4.088], low-grade trochlear dysplasia (OR 7.214), high-grade trochlear dysplasia (OR 18.945), patella alta (OR 8.416), elevated TT–TG distance (OR 12.742), complete MPFL tear at its isolated femoral-side (OR 6.04) and complete combined MPFL tear (OR 5.851).

Conclusions

Trochlear dysplasia, elevated TT–TG distance, patella alta, age < 18 years at the first-time LPD, complete MPFL tear at its isolated femoral-side and complete combined MPFL tear in the first-time LPD are independently associated with a higher incidence rate of the second-time LPD.

Level of evidence

III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aragão JA, Reis FP, de Vasconcelos DP, Feitosa VL, Nunes MA (2008) Metric measurements and attachment levels of the medial patellofemoral ligament: an anatomical study in cadavers. Clinics (Sao Paulo) 63:541–544

    Article  Google Scholar 

  2. Arendt EA, England K, Agel J, Tompkins MA (2017) An analysis of knee anatomic imaging factors associated with primary lateral patellar dislocations. Knee Surg Sports Traumatol Arthrosc 25:3099–3107

    Article  PubMed  Google Scholar 

  3. Askenberger M, Arendt EA, Ekström W, Voss U, Finnbogason T, Janarv PM (2016) Medial patellofemoral ligament injuries in children with first-time lateral patellar dislocations: a magnetic resonance imaging and arthroscopic study. Am J Sports Med 44:152–158

    Article  PubMed  Google Scholar 

  4. Askenberger M, Ekström W, Finnbogason T, Janarv PM (2014) Occult intra-articular knee injuries in children with hemarthrosis. Am J Sports Med 42:1600–1606

    Article  PubMed  Google Scholar 

  5. Askenberger M, Janarv PM, Finnbogason T, Arendt EA (2017) Morphology and anatomic patellar instability risk factors in first-time traumatic lateral patellar dislocations: a prospective magnetic resonance imaging study in skeletally immature children. Am J Sports Med 45:50–58

    Article  PubMed  Google Scholar 

  6. Balcarek P, Ammon J, Frosch S et al (2010) Magnetic resonance imaging characteristics of the medial patellofemoral ligament lesion in acute lateral patellar dislocations considering trochlear dysplasia, patella alta, and tibial tuberosity–trochlear groove distance. Arthroscopy 26:926–935

    Article  PubMed  Google Scholar 

  7. Balcarek P, Jung K, Ammon J et al (2010) Anatomy of lateral patellar instability: trochlear dysplasia and tibial tubercle–trochlear groove distance is more pronounced in women who dislocate the patella. Am J Sports Med 38:2320–2327

    Article  PubMed  Google Scholar 

  8. Balcarek P, Oberthür S, Hopfensitz S et al (2014) Which patellae are likely to redislocate? Knee Surg Sports Traumatol Arthrosc 22:2308–2314

    Article  PubMed  Google Scholar 

  9. Balcarek P, Walde TA, Frosch S, Schüttrumpf JP, Wachowski MM, Stürmer KM (2012) MRI but not arthroscopy accurately diagnoses femoral MPFL injury in first-time patellar dislocations. Knee Surg Sports Traumatol Arthrosc 20:1575–1580

    Article  PubMed  Google Scholar 

  10. Balcarek P, Walde TA, Frosch S et al (2011) Patellar dislocations in children, adolescents and adults: a comparative MRI study of medial patellofemoral ligament injury patterns and trochlear groove anatomy. Eur J Radiol 79:415–420

    Article  PubMed  Google Scholar 

  11. Bitar AC, Demange MK, D’Elia CO, Camanho GL (2012) Traumatic patellar dislocation: nonoperative treatment compared with MPFL reconstruction using patellar tendon. Am J Sports Med 40:114–122

    Article  PubMed  Google Scholar 

  12. Brown GD, Ahmad CS (2008) Combined medial patellofemoral ligament and patellotibial ligament reconstruction in skeletally immature patients. J Knee Surg 21:328–332

    Article  PubMed  Google Scholar 

  13. Camp CL, Heidenreich MJ, Dahm DL, Stuart MJ, Levy BA, Krych AJ (2016) Individualizing the tibial tubercle–trochlear groove distance: patellar instability ratios that predict recurrent instability. Am J Sports Med 44:393–399

    Article  PubMed  Google Scholar 

  14. Casteleyn PP, Handelberg F (1989) Arthroscopy in the diagnosis of occult dislocation of the patella. Acta Orthop Belg 55:381–383

    PubMed  CAS  Google Scholar 

  15. Chhabra A, Subhawong TK, Carrino JA (2011) A systematised MRI approach to evaluating the patellofemoral joint. Skelet Radiol 40:375–387

    Article  Google Scholar 

  16. Christensen TC, Sanders TL, Pareek A, Mohan R, Dahm DL, Krych AJ (2017) Risk factors and time to recurrent ipsilateral and contralateral patellar dislocations. Am J Sports Med 45:2105–2110

    Article  PubMed  Google Scholar 

  17. Conlan T, Garth WP Jr, Lemons JE (1993) Evaluation of the medial soft-tissue restraints of the extensor mechanism of the knee. J Bone Jt Surg Am 75:682–693

    Article  CAS  Google Scholar 

  18. Dejour D, Le Coultre B (2007) Osteotomies in patello-femoral instabilities. Sports Med Arthrosc Rev 15:39–46

    Article  PubMed  Google Scholar 

  19. Dejour H, Walch G, Neyret P, Adeleine P (1990) Dysplasia of the femoral trochlea. Rev Chir Orthop Reparatrice Appar Mot 76:45–54

    PubMed  CAS  Google Scholar 

  20. Dejour H, Walch G, Nove-Josserand L, Guier C (1994) Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc 2:19–26

    Article  PubMed  CAS  Google Scholar 

  21. Desio SM, Burks RT, Bachus KN (1998) Soft tissue restraints to lateral patellar translation in the human knee. Am J Sports Med 26:59–65

    Article  PubMed  CAS  Google Scholar 

  22. Diederichs G, Issever AS, Scheffler S (2010) MR imaging of patellar instability: injury patterns and assessment of risk factors. Radiographics 30:961–981

    Article  PubMed  Google Scholar 

  23. Dietrich TJ, Fucentese SF, Pfirrmann CW (2016) Imaging of individual anatomical risk factors for patellar instability. Semin Musculoskelet Radiol 20:65–73

    Article  PubMed  Google Scholar 

  24. Elias DA, White LM, Fithian DC (2002) Acute lateral patellar dislocation at MR imaging: injury patterns of medial patellar soft-tissue restraints and osteochondral injuries of the inferomedial patella. Radiology 225:736–743

    Article  PubMed  Google Scholar 

  25. Erickson BJ, Mascarenhas R, Sayegh ET et al (2015) Does operative treatment of first-time patellar dislocations lead to increased patellofemoral stability? A systematic review of overlapping meta-analyses. Arthroscopy 31:1207–1215

    Article  PubMed  Google Scholar 

  26. Felus J, Kowalczyk B (2012) Age-related differences in medial patellofemoral ligament injury patterns in traumatic patellar dislocation: case series of 50 surgically treated children and adolescents. Am J Sports Med 40:2357–2364

    Article  PubMed  Google Scholar 

  27. Fucentese SF, von Roll A, Koch PP, Epari DR, Fuchs B, Schottle PB (2006) The patella morphology in trochlear dysplasia: a comparative MRI study. Knee 13:145–150

    Article  PubMed  Google Scholar 

  28. Hiemstra LA, Kerslake S, Loewen M, Lafave M (2016) Effect of trochlear dysplasia on outcomes after isolated soft tissue stabilization for patellar instability. Am J Sports Med 44:1515–1523

    Article  PubMed  Google Scholar 

  29. Hopper GP, Leach WJ, Rooney BP, Walker CR, Blyth MJ (2014) Does degree of trochlear dysplasia and position of femoral tunnel influence outcome after medial patellofemoral ligament reconstruction? Am J Sports Med 42:716–722

    Article  PubMed  Google Scholar 

  30. Jaquith BP, Parikh SN (2017) Predictors of recurrent patellar instability in children and adolescents after first-time dislocation. J Pediatr Orthop 37:484–490

    Article  PubMed  Google Scholar 

  31. Ji G, Wang S, Wang X, Liu J, Niu J, Wang F (2017) Surgical versus nonsurgical treatments of acute primary patellar dislocation with special emphasis on the MPFL injury patterns. J Knee Surg 30:378–384

    Article  PubMed  Google Scholar 

  32. Kang HJ, Wang F, Chen BC, Zhang YZ, Ma L (2013) Non-surgical treatment for acute patellar dislocation with special emphasis on the MPFL injury patterns. Knee Surg Sports Traumatol Arthrosc 21:325–331

    Article  PubMed  Google Scholar 

  33. Kepler CK, Bogner EA, Hammoud S, Malcolmson G, Potter HG, Green DW (2011) Zone of injury of the medial patellofemoral ligament after acute patellar dislocation in children and adolescents. Am J Sports Med 39:1444–1449

    Article  PubMed  Google Scholar 

  34. Kikuchi S, Tajima G, Yan J et al (2017) Morphology of insertion sites on patellar side of medial patellofemoral ligament. Knee Surg Sports Traumatol Arthrosc 25:2488–2493

    Article  PubMed  Google Scholar 

  35. Köhlitz T, Scheffler S, Jung T et al (2013) Prevalence and patterns of anatomical risk factors in patients after patellar dislocation: a case control study using MRI. Eur Radiol 23:1067–1074

    Article  PubMed  Google Scholar 

  36. Lewallen L, McIntosh A, Dahm D (2015) First-time patellofemoral dislocation: risk factors for recurrent instability. J Knee Surg 28:303–309

    Article  PubMed  Google Scholar 

  37. Lewallen LW, McIntosh AL, Dahm DL (2013) Predictors of recurrent instability after acute patellofemoral dislocation in pediatric and adolescent patients. Am J Sports Med 41:575–581

    Article  PubMed  Google Scholar 

  38. Lippacher S, Dejour D, Elsharkawi M et al (2012) Observer agreement on the Dejour trochlear dysplasia classification: a comparison of true lateral radiographs and axial magnetic resonance images. Am J Sports Med 40:837–843

    Article  PubMed  Google Scholar 

  39. Nelitz M, Dreyhaupt J, Williams SRM (2018) Anatomic reconstruction of the medial patellofemoral ligament in children and adolescents using a pedicled quadriceps tendon graft shows favourable results at a minimum of 2-year follow-up. Knee Surg Sports Traumatol Arthrosc 26:1210–1215

    PubMed  Google Scholar 

  40. Nelitz M, Theile M, Dornacher D, Wölfle J, Reichel H, Lippacher S (2012) Analysis of failed surgery for patellar instability in children with open growth plates. Knee Surg Sports Traumatol Arthrosc 20:822–828

    Article  PubMed  Google Scholar 

  41. Nomura E, Horiuchi Y, Inoue M (2002) Correlation of MR imaging findings and open exploration of medial patellofemoral ligament injuries in acute patellar dislocations. Knee 9:139–143

    Article  PubMed  CAS  Google Scholar 

  42. Nwachukwu BU, So C, Schairer WW, Green DW, Dodwell ER (2016) Surgical versus conservative management of acute patellar dislocation in children and adolescents: a systematic review. Knee Surg Sports Traumatol Arthrosc 24:760–767

    Article  PubMed  Google Scholar 

  43. Panagiotopoulos E, Strzelczyk P, Herrmann M, Scuderi G (2006) Cadaveric study on static medial patellar stabilizers: the dynamizing role of the vastus medialis obliquus on medial patellofemoral ligament. Knee Surg Sports Traumatol Arthrosc 14:7–12

    Article  PubMed  Google Scholar 

  44. Pfirrmann CW, Zanetti M, Romero J, Hodler J (2000) Femoral trochlear dysplasia: MR findings. Radiology 216:858–864

    Article  PubMed  CAS  Google Scholar 

  45. Philippot R, Boyer B, Testa R, Farizon F, Moyen B (2012) The role of the medial ligamentous structures on patellar tracking during knee flexion. Knee Surg Sports Traumatol Arthrosc 20:331–336

    Article  PubMed  CAS  Google Scholar 

  46. Placella G, Tei MM, Sebastiani E et al (2014) Shape and size of the medial patellofemoral ligament for the best surgical reconstruction: a human cadaveric study. Knee Surg Sports Traumatol Arthrosc 22:2327–2333

    Article  PubMed  CAS  Google Scholar 

  47. Putney SA, Smith CS, Neal KM (2012) The location of medial patellofemoral ligament injury in adolescents and children. J Pediatr Orthop 32:241–244

    Article  PubMed  Google Scholar 

  48. Sanders TL, Pareek A, Hewett TE, Stuart MJ, Dahm DL, Krych AJ (2018) High rate of recurrent patellar dislocation in skeletally immature patients: a long-term population-based study. Knee Surg Sports Traumatol Arthrosc 26:1037–1043

    PubMed  Google Scholar 

  49. Schoettle PB, Zanetti M, Seifert B, Pfirrmann CW, Fucentese SF, Romero J (2006) The tibial tuberosity–trochlear groove distance: a comparative study between CT and MRI scanning. Knee 13:26–31

    Article  PubMed  Google Scholar 

  50. Schöttle PB, Scheffler SU, Schwarck A, Weiler A (2006) Arthroscopic medial retinacular repair after patellar dislocation with and without underlying trochlear dysplasia: a preliminary report. Arthroscopy 22:1192–1198

    Article  PubMed  Google Scholar 

  51. Seeley M, Bowman KF, Walsh C, Sabb BJ, Vanderhave KL (2012) Magnetic resonance imaging of acute patellar dislocation in children: patterns of injury and risk factors for recurrence. J Pediatr Orthop 32:145–155

    Article  PubMed  Google Scholar 

  52. Shea KG, Polousky JD, Jacobs JC Jr et al (2015) The patellar insertion of the medial patellofemoral ligament in children: a cadaveric study. J Pediatr Orthop 35:e31–e35

    Article  PubMed  Google Scholar 

  53. Shea KG, Polousky JD, Jacobs JC Jr et al (2014) The relationship of the femoral physis and the medial patellofemoral ligament in children: a cadaveric study. J Pediatr Orthop 34:808–813

    Article  PubMed  Google Scholar 

  54. Shea KG, Styhl AC, Jacobs JC Jr et al (2016) The relationship of the femoral physis and the medial patellofemoral ligament in children: a cadaveric study. Am J Sports Med 44:2833–2837

    Article  PubMed  Google Scholar 

  55. Sillanpää PJ, Mäenpää HM, Mattila VM, Visuri T, Pihlajamäki H (2008) Arthroscopic surgery for primary traumatic patellar dislocation: a prospective, nonrandomized study comparing patients treated with and without acute arthroscopic stabilization with a median 7-year follow-up. Am J Sports Med 36:2301–2309

    Article  PubMed  Google Scholar 

  56. Sillanpää PJ, Peltola E, Mattila VM, Kiuru M, Visuri T, Pihlajamäki H (2009) Femoral avulsion of the medial patellofemoral ligament after primary traumatic patellar dislocation predicts subsequent instability in men: a mean 7-year nonoperative follow-up study. Am J Sports Med 37:1513–1521

    Article  PubMed  Google Scholar 

  57. Sillanpää PJ, Salonen E, Pihlajamäki H, Mäenpää HM (2014) Medial patellofemoral ligament avulsion injury at the patella: classification and clinical outcome. Knee Surg Sports Traumatol Arthrosc 22:2414–2418

    Article  PubMed  Google Scholar 

  58. Smith TO, Donell S, Song F, Hing CB (2015) Surgical versus non-surgical interventions for treating patellar dislocation. Cochrane Database Syst Rev 26:CD008106. https://doi.org/10.1002/14651858.CD008106.pub3

    Article  Google Scholar 

  59. Steensen RN, Bentley JC, Trinh TQ, Backes JR, Wiltfong RE (2015) The prevalence and combined prevalences of anatomic factors associated with recurrent patellar dislocation: a magnetic resonance imaging study. Am J Sports Med 43:921–927

    Article  PubMed  Google Scholar 

  60. Zhang GY, Zheng L, Ding HY, Li EM, Sun BS, Shi H (2015) Evaluation of medial patellofemoral ligament tears after acute lateral patellar dislocation: comparison of high-frequency ultrasound and MR. Eur Radiol 25:274–281

    Article  PubMed  Google Scholar 

  61. Zhang GY, Zheng L, Feng Y et al (2015) Injury patterns of medial patellofemoral ligament and correlation analysis with articular cartilage lesions of the lateral femoral condyle after acute lateral patellar dislocation in adults: an MRI evaluation. Injury 46:2413–2421

    Article  PubMed  Google Scholar 

  62. Zhang GY, Zheng L, Shi H, Ji BJ, Feng Y, Ding HY (2017) Injury patterns of medial patellofemoral ligament after acute lateral patellar dislocation in children: correlation analysis with anatomical variants and articular cartilage lesion of the patella. Eur Radiol 27:1322–1330

    Article  PubMed  Google Scholar 

  63. Zhang GY, Zheng L, Shi H et al (2018) Correlation analysis between injury patterns of medial patellofemoral ligament and vastus medialis obliquus after acute first-time lateral patellar dislocation. Knee Surg Sports Traumatol Arthrosc 26:719–726

    Article  PubMed  Google Scholar 

  64. Zhang GY, Zheng L, Shi H, Qu SH, Ding HY (2013) Sonography on injury of the medial patellofemoral ligament after acute traumatic lateral patellar dislocation: injury patterns and correlation analysis with injury of articular cartilage of the inferomedial patella. Injury 44:1892–1898

    Article  PubMed  Google Scholar 

  65. Zheng L, Shi H, Feng Y, Sun BS, Ding HY, Zhang GY (2015) Injury patterns of medial patellofemoral ligament and correlation analysis with articular cartilage lesions of the lateral femoral condyle after acute lateral patellar dislocation in children and adolescents: an MRI evaluation. Injury 46:1137–1144

    Article  PubMed  Google Scholar 

Download references

Funding

No funding was received in support of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-ying Zhang.

Ethics declarations

Conflict of interest

All authors declare that they have no financial and/or personal relationships with other individuals or organizations that could influence this work.

Ethical approval

The study was authorized by the local ethics committee and was performed in accordance with the Ethical standards of the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

The authors state that the patients gave the informed consent prior being included into the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Gy., Ding, Hy., Li, Em. et al. Incidence of second-time lateral patellar dislocation is associated with anatomic factors, age and injury patterns of medial patellofemoral ligament in first-time lateral patellar dislocation: a prospective magnetic resonance imaging study with 5-year follow-up. Knee Surg Sports Traumatol Arthrosc 27, 197–205 (2019). https://doi.org/10.1007/s00167-018-5062-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-018-5062-8

Keywords

Navigation