Skip to main content
Log in

Earlier anterior cruciate ligament reconstruction is associated with a decreased risk of medial meniscal and articular cartilage damage in children and adolescents: a systematic review and meta-analysis

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

To evaluate the association between surgical timing and the incidence of secondary meniscal or chondral damage in children and adolescents with anterior cruciate ligament (ACL) ruptures.

Methods

Three electronic databases, PubMed, MEDLINE, and EMBASE, were systematically searched from database inception until October 16, 2017 by two reviewers independently and in duplicate. The inclusion criteria were English language studies that reported the incidence of meniscal and articular cartilage damage in children or adolescent athletes with ACL injuries as well as the timing of their ACL reconstruction (ACLR). Risk ratios were combined in a meta-analysis using a random effects model.

Results

A total of nine studies including 1353 children and adolescents met the inclusion criteria. The mean age of patients included was 14.2 years (range 6–19), and 45% were female. There was a significantly decreased risk of concomitant medial meniscal injury in those reconstructed early (26%) compared to those with delayed reconstruction (47%) [pooled risk ratio (RR) = 0.49, 95% CI 0.36–0.65, p < 0.00001]. There was also a significantly reduced risk of medial femoral chondral (RR = 0.48, 95% CI 0.31–0.75, p = 0.001), lateral femoral chondral (RR = 0.38, 95% CI 0.20–0.75, p = 0.005), tibial chondral (RR = 0.45, 95% CI 0.27–0.75, p = 0.002), and patellofemoral chondral (RR = 0.41, 95% CI 0.20–0.82, p = 0.01) damage in the early reconstruction group in comparison to the delayed group.

Conclusion

Pooled results from observational studies suggest that early ACLR results in a significantly decreased risk of secondary medial meniscal injury, as well as secondary medial, lateral, and patellofemoral compartment chondral damage in children and adolescents. This study provides clinicians with valuable information regarding the benefits of early ACL reconstruction in children and adolescents, and can be used in the decision making for athletes in this population.

Level of evidence

IV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahn JH, Bae TS, Kang KS, Kang SY, Lee SH (2011) Longitudinal tear of the medial meniscus posterior horn in the anterior cruciate ligament-deficient knee significantly influences anterior stability. Am J Sports Med 39:2187–2193

    Article  Google Scholar 

  2. Anderson AF, Anderson CN (2015) Correlation of meniscal and articular cartilage injuries in children and adolescents with timing of anterior cruciate ligament reconstruction. Am J Sports Med 43:275–281

    Article  Google Scholar 

  3. Anderson AF, Anderson CN (2015) Correlation of meniscal and articular cartilage injuries in children and adolescents with timing of anterior cruciate ligament reconstruction. Am J Sport Med 43:275–281

    Article  Google Scholar 

  4. Ardern CL, Ekås G, Grindem H, Moksnes H, Anderson A, Chotel F, Cohen M, Forssblad M, Ganley TJ, Feller JA, Karlsson J, Kocher MS, LaPrade RF, McNamee M, Mandelbaum B, Micheli L, Mohtadi N, Reider B, Roe J, Seil R, Siebold R, Silvers-Granelli HJ, Soligard T, Witvrouw E, Engebretsen L (2018) 2018 International Olympic Committee consensus statement on prevention, diagnosis and management of paediatric anterior cruciate ligament (ACL) injuries. Knee Surgery Sport Traumatol Arthrosc. https://doi.org/10.1007/s00167-018-4865-y

    Article  Google Scholar 

  5. Chhadia AM, Inacio MCS, Maletis GB, Csintalan RP, Davis BR, Funahashi TT (2011) Are meniscus and cartilage injuries related to time to anterior cruciate ligament reconstruction? Am J Sports Med 39:1894–1899

    Article  Google Scholar 

  6. Crawford EA, Young LJ, Bedi A, Wojtys EM (2017) The effects of delays in diagnosis and surgical reconstruction of ACL tears in skeletally immature individuals on subsequent meniscal and chondral injury. J Pediatr Orthop. https://doi.org/10.1097/BPO.0000000000000960

    Article  PubMed  Google Scholar 

  7. Dodwell ER, LaMont LE, Green DW, Pan TJ, Marx RG, Lyman S (2014) 20 years of pediatric anterior cruciate ligament reconstruction in New York State. Am J Sports Med 42:675–680

    Article  Google Scholar 

  8. Dumont GD, Hogue GD, Padalecki JR, Okoro N, Wilson PL (2012) Meniscal and chondral injuries associated with pediatric anterior cruciate ligament tears: relationship of treatment time and patient-specific factors. Am J Sports Med 40:2128–2133

    Article  Google Scholar 

  9. Fabricant PD, Lakomkin N, Sugimoto D, Tepolt FA, Stracciolini A, Kocher MS (2016) Youth sports specialization and musculoskeletal injury: a systematic review of the literature. Phys Sportsmed 44:257–262

    Article  Google Scholar 

  10. Fehnel DJ, Johnson R (2000) Anterior cruciate injuries in the skeletally immature athlete: a review of treatment outcomes. Sport Med 29:51–63

    Article  CAS  Google Scholar 

  11. Frosch K-H, Stengel D, Brodhun T, Stietencron I, Holsten D, Jung C, Reister D, Voigt C, Niemeyer P, Maier M, Hertel P, Jagodzinski M, Lill H (2010) Outcomes and risks of operative treatment of rupture of the anterior cruciate ligament in children and adolescents. Arthroscopy 26:1539–1550

    Article  Google Scholar 

  12. Guenther ZD, Swami V, Dhillon SS, Jaremko JL (2014) Meniscal injury after adolescent anterior cruciate ligament injury: how long are patients at risk? Clin Orthop Relat Res 472:990–997

    Article  Google Scholar 

  13. Guess TM, Razu S (2017) Loading of the medial meniscus in the ACL deficient knee: a multibody computational study. Med Eng Phys 41:26–34

    Article  Google Scholar 

  14. Guyatt GH, Oxman AD, Montori V, Vist G, Kunz R, Brozek J, Alonso-Coello P, Djulbegovic B, Atkins D, Falck-Ytter Y, Williams JW, Meerpohl J, Norris SL, Akl EA, Schünemann HJ (2011) GRADE guidelines: 5. Rating the quality of evidence—Publication bias. J Clin Epidemiol 64:1277–1282

    Article  Google Scholar 

  15. Henry J, Chotel F, Chouteau J, Fessy MH, Bérard J, Moyen B (2009) Rupture of the anterior cruciate ligament in children: early reconstruction with open physes or delayed reconstruction to skeletal maturity? Knee Surgery Sport Traumatol Arthrosc 17:748–755

    Article  Google Scholar 

  16. Kay J, Memon M, Marx RG, Peterson D, Simunovic N, Ayeni OR (2018) Over 90% of children and adolescents return to sport after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Knee Surgery Sport Traumatol Arthrosc. https://doi.org/10.1007/s00167-018-4830-9

    Article  Google Scholar 

  17. Krych AJ, Pitts RT, Dajani KA, Stuart MJ, Levy BA, Dahm DL (2010) Surgical repair of meniscal tears with concomitant anterior cruciate ligament reconstruction in patients 18 years and younger. Am J Sports Med 38:976–982

    Article  Google Scholar 

  18. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159

    Article  CAS  Google Scholar 

  19. Lawrence JT, Argawal N, Ganley TJ (2011) Degeneration of the knee joint in skeletally immature patients with a diagnosis of an anterior cruciate ligament tear: is there harm in delay of treatment? Am J Sport Med 39:2582–2587

    Article  Google Scholar 

  20. Lawrence JTR, Argawal N, Ganley TJ (2011) Degeneration of the knee joint in skeletally immature patients with a diagnosis of an anterior cruciate ligament tear. Am J Sports Med 39:2582–2587

    Article  Google Scholar 

  21. Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22:719–748

    CAS  PubMed  Google Scholar 

  22. Millett PJ, Willis AA, Warren RF (2002) Associated injuries in pediatric and adolescent anterior cruciate ligament tears: does a delay in treatment increase the risk of meniscal tear? Arthroscopy 18:955–959

    Article  Google Scholar 

  23. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6:e1000097

    Article  Google Scholar 

  24. Moksnes H, Engebretsen L, Eitzen I, Risberg MA (2013) Functional outcomes following a non-operative treatment algorithm for anterior cruciate ligament injuries in skeletally immature children 12 years and younger. A prospective cohort with 2 years follow-up. Br J Sport Med 47:488–494

    Article  Google Scholar 

  25. Moksnes H, Engebretsen L, Risberg MA (2013) Prevalence and incidence of new meniscus and cartilage injuries after a nonoperative treatment algorithm for ACL tears in skeletally immature children: a prospective MRI study. Am J Sports Med 41:1771–1779

    Article  Google Scholar 

  26. Newman JT, Carry PM, Terhune EB, Spruiell MD, Heare A, Mayo M, Vidal AF (2015) Factors predictive of concomitant injuries among children and adolescents undergoing anterior cruciate ligament surgery. Am J Sports Med 43:282–288

    Article  Google Scholar 

  27. Noyes FR, Barber-Westin SD (2002) Arthroscopic repair of meniscal tears extending into the avascular zone in patients younger than twenty years of age. Am J Sport Med 30:589–600

    Article  Google Scholar 

  28. Placella G, Bartoli M, Peruzzi M, Speziali A, Pace V, Cerulli G (2016) Return to sport activity after anterior cruciate ligament reconstruction in skeletally immature athletes with manual drilling original all inside reconstruction at 8 years follow-up. Acta Orthop Traumatol Turc 50:635–638

    Article  Google Scholar 

  29. Ramski DE, Kanj WW, Franklin CC, Baldwin KD, Ganley TJ (2014) Anterior cruciate ligament tears in children and adolescents: a meta-analysis of nonoperative versus operative treatment. Am J Sport Med 42:2769–2776

    Article  Google Scholar 

  30. Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J (2003) Methodological index for non-randomized studies (Minors): development and validation of a new instrument. ANZ J Surg 73:712–716

    Article  Google Scholar 

  31. Vavken P, Tepolt FA, Kocher MS (2016) Concurrent meniscal and chondral injuries in pediatric and adolescent patients undergoing ACL reconstruction. J Pediatr Orthop 00:1–5

    Google Scholar 

  32. Webster KE, Feller JA (2016) Exploring the high reinjury rate in younger patients undergoing anterior cruciate ligament reconstruction. Am J Sports Med 44:2827–2832

    Article  Google Scholar 

  33. Wright JG (2005) Levels of evidence and grades of recommendations. AAOS Bull 53. http://www2.aaos.org/bulletin/apr05/fline9.asp

Download references

Funding

There are no sources of funding to be declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olufemi R. Ayeni.

Ethics declarations

Conflict of interest

None of the authors have any conflicts of interest to declare.

Ethical approval

This is a systematic review of the literature and no ethical approval is required.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 23 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kay, J., Memon, M., Shah, A. et al. Earlier anterior cruciate ligament reconstruction is associated with a decreased risk of medial meniscal and articular cartilage damage in children and adolescents: a systematic review and meta-analysis. Knee Surg Sports Traumatol Arthrosc 26, 3738–3753 (2018). https://doi.org/10.1007/s00167-018-5012-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-018-5012-5

Keywords

Navigation