Advertisement

Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 26, Issue 7, pp 2080–2087 | Cite as

Achilles tendon elastic properties remain decreased in long term after rupture

  • B. FrankewyczEmail author
  • A. Penz
  • J. Weber
  • N. P. da Silva
  • F. Freimoser
  • R. Bell
  • M. Nerlich
  • E. M. Jung
  • D. Docheva
  • C. G. Pfeifer
Ankle

Abstract

Purpose

Rupture of the Achilles tendon results in inferior scar tissue formation. Elastography allows a feasible in vivo investigation of biomechanical properties of the Achilles tendon. The purpose of this study is to investigate the biomechanical properties of healed Achilles tendons in the long term.

Materials and methods

Patients who suffered from Achilles tendon rupture were recruited for an elastographic evaluation. Unilateral Achilles tendon ruptures were included and scanned in the mid-substance and calcaneal insertion at least 2 years after rupture using shear wave elastography. Results were compared to patients’ contralateral non-injured Achilles tendons and additionally to a healthy population. Descriptive statistics, reliability analysis, and correlation analysis with clinical scores were performed.

Results

Forty-one patients were included in the study with a mean follow-up-time of 74 ± 30; [26–138] months after rupture. Significant differences were identified in shear wave elastography in the mid-substance of healed tendons (shear wave velocity 1.2 ±1.5 m/s) compared to both control groups [2.5 ±1.5 m/s (p < 0.01) and 2.8 ±1.6 m/s (p < 0.0001) contralateral and healthy population, respectively]. There was no correlation between the measurements and the clinical outcome.

Conclusions

This study shows that the healed Achilles tendon after rupture has inferior elastic properties even after a long-term healing phase. Differences in elastic properties after rupture mainly originate from the mid-substance of the Achilles tendon, in which most of the ruptures occur. Elastographic results do not correspond with subjective perception. Clinically, sonoelastographical measurements of biomechanical properties can be useful to provide objective insights in tendon recovery.

Keywords

Achilles tendon Achilles tendon rupture Shear wave elastography Elastic properties Biomechanical properties Tendon biomechanics 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that there is no competing interest.

Ethical approval

The study was performed after approval of the university’s ethical review committee (University of Regensburg, AZ 15-101-0019).

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Ganestam A, Kallemose T, Troelsen A, Barfod KW (2016) Increasing incidence of acute Achilles tendon rupture and a noticeable decline in surgical treatment from 1994 to 2013. A nationwide registry study of 33,160 patients. Knee Surg Sports Traumatol Arthrosc 24:3730–3737CrossRefPubMedGoogle Scholar
  2. 2.
    Wang JH-C (2006) Mechanobiology of tendon. J Biomech 39:1563–1582CrossRefPubMedGoogle Scholar
  3. 3.
    Rettig AC, Liotta FJ, Klootwyk TE, Porter DA, Mieling P (2005) Potential risk of rerupture in primary Achilles tendon repair in athletes younger than 30 years of age. Am J Sports Med 33:119–123CrossRefPubMedGoogle Scholar
  4. 4.
    Palmes D, Spiegel HU, Schneider TO, Langer M, Stratmann U, Budny T, Probst A (2002) Achilles tendon healing: long-term biomechanical effects of postoperative mobilization and immobilization in a new mouse model. J Orthop Res 20:939–946CrossRefPubMedGoogle Scholar
  5. 5.
    Maganaris CN, Narici MV, Maffulli N (2008) Biomechanics of the Achilles tendon. Disabil Rehabil 30:1542–1547CrossRefPubMedGoogle Scholar
  6. 6.
    Bressel E, McNair PJ (2001) Biomechanical behavior of the plantar flexor muscle-tendon unit after an Achilles tendon rupture. Am J Sports Med 29:321–326CrossRefPubMedGoogle Scholar
  7. 7.
    Attia D, Schoenemeier B, Rodt T, Negm AA, Lenzen H, Lankisch TO, Manns M, Gebel M, Potthoff A (2015) Evaluation of liver and spleen stiffness with Acoustic radiation force impulse quantification elastography for diagnosing clinically significant portal hypertension. Ultraschall Med 36:603–610CrossRefPubMedGoogle Scholar
  8. 8.
    Ruan Z, Zhao B, Qi H, Zhang Y, Zhang F, Wu M, Shao G (2015) Elasticity of healthy Achilles tendon decreases with the increase of age as determined by acoustic radiation force impulse imaging. Int J Clin Exp Med 8:1043–1050PubMedPubMedCentralGoogle Scholar
  9. 9.
    Nierhoff J, Chávez Ortiz AA, Herrmann E, Zeuzem S, Friedrich-Rust M (2013) The efficiency of acoustic radiation force impulse imaging for the staging of liver fibrosis: a meta-analysis. Eur Radiol 23:3040–3053CrossRefPubMedGoogle Scholar
  10. 10.
    Thiele M, Madsen BS, Procopet B, Hansen JF, Møller LMS, Detlefsen S, Berzigotti A, Krag A (2016) Reliability criteria for liver stiffness measurements with real-time 2D shear wave elastography in different clinical scenarios of chronic liver disease. Ultraschall Med.  https://doi.org/10.1055/s-0042-108431 CrossRefPubMedGoogle Scholar
  11. 11.
    Aubry S, Risson J-R, Kastler A, Barbier-Brion B, Siliman G, Runge M, Kastler B (2013) Biomechanical properties of the calcaneal tendon in vivo assessed by transient shear wave elastography. Skeletal Radiol 42:1143–1150CrossRefPubMedGoogle Scholar
  12. 12.
    DeWall RJ, Slane LC, Lee KS, Thelen DG (2014) Spatial variations in Achilles tendon shear wave speed. J Biomech 47:2685–2692CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Chen X-M, Cui L-G, He P, Shen W-W, Qian Y-J, Wang J-R (2013) Shear wave elastographic characterization of normal and torn achilles tendons: a pilot study. J Ultrasound Med 32:449–455CrossRefPubMedGoogle Scholar
  14. 14.
    van Bergen CJA, Sierevelt IN, Hoogervorst P, Waizy H, van Dijk CN, Becher C (2014) Translation and validation of the German version of the foot and ankle outcome score. Arch Orthop Trauma Surg 134:897–901CrossRefPubMedGoogle Scholar
  15. 15.
    Lohrer H, Nauck T (2009) Cross-cultural adaptation and validation of the VISA-A questionnaire for German-speaking Achilles tendinopathy patients. BMC Musculoskelet Disord 10:134–142CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Bamber J, Cosgrove D, Dietrich CF, Fromageau J, Bojunga J, Calliada F, Cantisani V, Correas J-M, D’Onofrio M, Drakonaki EE, Fink M, Friedrich-Rust M, Gilja OH, Havre RF, Jenssen C, Klauser AS, Ohlinger R, Saftoiu A, Schaefer F, Sporea I, Piscaglia F (2013) EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 1: basic principles and technology. Ultraschall Med 34:169–184CrossRefPubMedGoogle Scholar
  17. 17.
    Zhang L, Wan W, Wang Y, Jiao Z, Zhang L, Luo Y, Tang P (2016) Evaluation of elastic stiffness in healing Achilles tendon after surgical repair of a tendon rupture using in vivo ultrasound shear wave elastography. Med Sci Monit 22:1186–1191CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Docheva D, Müller SA, Majewski M, Evans CH (2015) Biologics for tendon repair. Adv Drug Deliv Rev 84:222–239CrossRefPubMedGoogle Scholar
  19. 19.
    Eliasson P, Couppé C, Lonsdale M, Svensson RB, Neergaard C, Kjær M, Friberg L, Magnusson SP (2016) Ruptured human Achilles tendon has elevated metabolic activity up to 1 year after repair. Eur J Nucl Med Mol Imaging 43:1868–1877CrossRefPubMedGoogle Scholar
  20. 20.
    Geremia JM, Bobbert MF, Casa Nova M, Ott RD, Lemos F, de A, Lupion, R de O, Frasson, Vaz VB MA (2015) The structural and mechanical properties of the Achilles tendon 2 years after surgical repair. Clin Biomech 30:485–492CrossRefGoogle Scholar
  21. 21.
    Ying M, Yeung E, Li B, Li W, Lui M, Tsoi C-W (2003) Sonographic evaluation of the size of Achilles tendon: the effect of exercise and dominance of the ankle. Ultrasound Med Biol 29:637–642CrossRefPubMedGoogle Scholar
  22. 22.
    Bleakney RR, Tallon C, Wong JK, Lim KP, Maffulli N (2002) Long-term ultrasonographic features of the Achilles tendon after rupture. Clin J Sport Med 12:273–278CrossRefPubMedGoogle Scholar
  23. 23.
    Raikin SM, Garras DN, Krapchev PV (2013) Achilles tendon injuries in a United States population. Foot Ankle Int 34:475–480CrossRefPubMedGoogle Scholar
  24. 24.
    Chen TM, Rozen WM, Pan W, Ashton MW, Richardson MD, Taylor GI (2009) The arterial anatomy of the Achilles tendon: anatomical study and clinical implications. Clin Anat 22:377–385CrossRefPubMedGoogle Scholar
  25. 25.
    Longo UG, Ronga M, Maffulli N (2009) Acute ruptures of the achilles tendon. Sports Med Arthrosc Rev 17:127–138CrossRefPubMedGoogle Scholar
  26. 26.
    Pedowitz D, Kirwan G (2013) Achilles tendon ruptures. Curr Rev Musculoskelet Med 6:285–293CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Williams I, Heaton A, McCullagh K (1980) Cell morphology and collagen types in equine tendon scar. Res Vet Sci 28:302–310PubMedGoogle Scholar
  28. 28.
    Frank C, McDonald D, Shrive N (1997) Collagen fibril diameters in the rabbit medial collateral ligament scar: a longer term assessment. Connect Tissue Res 36:261–269CrossRefPubMedGoogle Scholar
  29. 29.
    Arya S, Kulig K (2010) Tendinopathy alters mechanical and material properties of the Achilles tendon. J Appl Physiol 108:670–675CrossRefPubMedGoogle Scholar
  30. 30.
    Aubry S, Nueffer J-P, Tanter M, Becce F, Vidal C, Michel F (2015) Viscoelasticity in Achilles tendonopathy: quantitative assessment by using real-time shear-wave elastography. Radiology 274:821–829CrossRefPubMedGoogle Scholar
  31. 31.
    Dillman JR, Chen S, Davenport MS, Zhao H, Urban MW, Song P, Watcharotone K, Carson PL (2015) Superficial ultrasound shear wave speed measurements in soft and hard elasticity phantoms: repeatability and reproducibility using two ultrasound systems. Pediatr Radiol 45:376–385CrossRefPubMedGoogle Scholar
  32. 32.
    Fu S, Cui L, He X, Sun Y (2016) Elastic characteristics of the normal achilles tendon assessed by virtual touch imaging quantification shear wave elastography. J Ultrasound Med 35:1881–1887CrossRefPubMedGoogle Scholar
  33. 33.
    LaCroix AS, Duenwald-Kuehl SE, Lakes RS, Vanderby R (2013) Relationship between tendon stiffness and failure: a metaanalysis. J Appl Physiol 115:43–51CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Mark-Christensen T, Troelsen A, Kallemose T, Barfod KW (2016) Functional rehabilitation of patients with acute Achilles tendon rupture: a meta-analysis of current evidence. Knee Surg Sports Traumatol Arthrosc 24:1852–1859CrossRefPubMedGoogle Scholar
  35. 35.
    Wu C-H, Chen W-S, Park G-Y, Wang T-G, Lew HL (2012) Musculoskeletal sonoelastography: a focused review of its diagnostic applications for evaluating tendons and fascia. J Med Ultrasound 20:79–86CrossRefGoogle Scholar

Copyright information

© European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2017

Authors and Affiliations

  • B. Frankewycz
    • 1
    • 3
    Email author
  • A. Penz
    • 1
  • J. Weber
    • 1
  • N. P. da Silva
    • 2
  • F. Freimoser
    • 1
  • R. Bell
    • 3
  • M. Nerlich
    • 1
  • E. M. Jung
    • 2
  • D. Docheva
    • 1
  • C. G. Pfeifer
    • 1
  1. 1.Department of Trauma Surgery and Laboratory of Experimental Trauma SurgeryRegensburg University Medical CenterRegensburgGermany
  2. 2.Department of RadiologyRegensburg University Medical CenterRegensburgGermany
  3. 3.Sibley School of Mechanical and Aerospace EngineeringCornell UniversityIthacaUSA

Personalised recommendations