Skip to main content
Log in

Large correction in opening wedge high tibial osteotomy with resultant joint-line obliquity induces excessive shear stress on the articular cartilage

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The purpose of this study was to analyse the resultant stress induced by joint-line obliquity after HTO for varus knee deformity using a three-dimensional (3D) finite element model analysis.

Methods

The geometrical bone data used in this study were derived from commercially available human bone digital anatomy media. The 3D knee models were developed using 3D computer-aided design software. The articular surface was overlaid with a 2-mm-thick cartilage layer for both femoral and tibial condyles. Ligament structures were simulated based on properties reported in previous anatomical studies. Regarding the loading condition, isolated axial loads of 1200 N with lateral joint-line inclinations of 2.5°, 5°, 7.5°, and 10° in reference to the horizontal axis were applied to the femur to simulate the mechanical environment in a knee with joint-line obliquity.

Results

A steep rise of shear stress in the medial compartment was noted in the model with obliquity of 5° or more. This laterally directed shear stress exhibited an incremental increase in accordance with the obliquity angle. The maximum shear stress value in the medial cartilage increased from 1.6 MPa for the normal knee to 3.3, 5.2, and 7.2 MPa in the joint-line obliquity models with 5°, 7.5°, and 10° of obliquity, respectively.

Conclusions

The effects of HTO for varus knee deformity on the amount/distribution of stresses in the articular cartilage were analysed using a 3D finite element model. It was shown that joint-line obliquity of more than 5° induced excessive shear stress in the tibial articular cartilage. A large amount of correction in OWHTO with a resultant joint-line obliquity of 5° or more may induce detrimental stress to the articular cartilage. Double-level osteotomy should be considered as a surgical option in this situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Agneskirchner JD, Hurschler C, Wrann CD, Lobenhoffer P (2007) The effects of valgus medial opening wedge high tibial osteotomy on articular cartilage pressure of the knee: a biomechanical study. Arthroscopy 23:852–861

    Article  PubMed  Google Scholar 

  2. Agneskirchner JD, Lobenhoffer P (2007) Medial opening wedge tibial osteotomy and the sagittal plane: the effect of increasing tibial slope on tibiofemoral contact pressure. Am J Sports Med 35:494–495

    Article  PubMed  Google Scholar 

  3. Andriacchi TP, Mikosz RP, Hampton SJ, Galante JO (1983) Model studies of the stiffness characteristics of the human knee joint. J Biomech 16:23–29

    Article  PubMed  CAS  Google Scholar 

  4. Babis GC, An KN, Chao EY, Rand JA, Sim FH (2002) Double level osteotomy of the knee: a method to retain joint-line obliquity. Clinical results. J Bone Joint Surg Am 84:1380–1388

    Article  PubMed  Google Scholar 

  5. Bonnin MP, Laurent JR, Zadegan F, Badet R, Pooler Archbold HA, Servien E (2013) Can patients really participate in sport after high tibial osteotomy? Knee Surg Sports Traumatol Arthrosc 21:64–73

    Article  PubMed  Google Scholar 

  6. Brinkman JM, Luites JW, Wymenga AB, van Heerwaarden RJ (2010) Early full weight bearing is safe in open-wedge high tibial osteotomy. Acta Orthop 81:193–198

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chao EY, Neluheni EV, Hsu RW, Paley D (1994) Biomechanics of malalignment. Orthop Clin North Am 25:379–386

    PubMed  CAS  Google Scholar 

  8. Cicuttini FM, Wluka AE, Stuckey SL (2001) Tibial and femoral cartilage changes in knee osteoarthritis. Ann Rheum Dis 60:977–980

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Coventry MB (1987) Proximal tibial varus osteotomy for osteoarthritis of the lateral compartment of the knee. J Bone Joint Surg Am 69:32–38

    Article  PubMed  CAS  Google Scholar 

  10. El-Azab HM, Morgenstern M, Ahrens P, Schuster T, Imhoff AB, Lorenz SG (2011) Limb alignment after open-wedge high tibial osteotomy and its effect on the clinical outcome. Orthopedics 34:e622–e628

    PubMed  Google Scholar 

  11. Floerkemeier S, Staubli AE, Schroeter S, Goldhahn S, Lobenhoffer P (2013) Outcome after high tibial open-wedge osteotomy: a retrospective evaluation of 533 patients. Knee Surg Sports Traumatol Arthrosc 21:170–180

    Article  PubMed  Google Scholar 

  12. Hernigou P, Duffiet P, Julian D, Guissou I, Poignard A, Flouzat-Lachaniette CH (2013) Outcome of total knee arthroplasty after high tibial osteotomy: does malalignment jeopardize the results when using a posterior-stabilized arthroplasty? HSS J 9:134–137

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hofmann S, Lobenhoffer P, Staubli A, Van Heerwaarden R (2009) Osteotomies of the knee joint in patients with monocompartmental arthritis. Orthopade 38:755–769

    Article  PubMed  CAS  Google Scholar 

  14. Khoshgoftar M, Vrancken AC, van Tienen TG, Buma P, Janssen D, Verdonschot N (2015) The sensitivity of cartilage contact pressures in the knee joint to the size and shape of an anatomically shaped meniscal implant. J Biomech 48:1427–1435

    Article  PubMed  CAS  Google Scholar 

  15. Kwon SK, Moon HK, Choi CJ, Park SH, Lee JJ, Kim YC, Park YS, Koh YG (2015) Accelerated degeneration of the discoid lateral meniscus after medial opening wedge high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 23:97–103

    Article  PubMed  Google Scholar 

  16. Lee DH, Park SC, Park HJ, Han SB (2016) Effect of soft tissue laxity of the knee joint on limb alignment correction in open-wedge high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 24:3704–3712

    Article  PubMed  Google Scholar 

  17. Lee KM, Chang CB, Park MS, Kang SB, Kim TK, Chung CY (2015) Changes of knee joint and ankle joint orientations after high tibial osteotomy. Osteoarthritis Cartilage 23:232–238

    Article  PubMed  CAS  Google Scholar 

  18. Lobenhoffer P, Agneskirchner JD (2003) Improvements in surgical technique of valgus high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 11:132–138

    Article  PubMed  Google Scholar 

  19. Luo CA, Hwa SY, Lin SC, Chen CM, Tseng CS (2005) Placement-induced effects on high tibial osteotomized construct–biomechanical tests and finite-element analyses. BMC Musculoskelet Disord 16:235

    Article  Google Scholar 

  20. Martin JA, Buckwalter JA (2006) Post-traumatic osteoarthritis: the role of stress induced chondrocyte damage. Biorheology 43:517–521

    PubMed  CAS  Google Scholar 

  21. Mononen ME, Jurvelin JS, Korhonen RK (2013) Effects of radial tears and partial meniscectomy of lateral meniscus on the knee joint mechanics during the stance phase of the gait cycle–A 3D finite element study. J Orthop Res 31:1208–1217

    Article  PubMed  Google Scholar 

  22. Niemeyer P, Koestler W, Kaehny C, Kreuz PC, Brooks CJ, Strohm PC, Helwig P, Suedkamp NP (2008) Two-year results of open-wedge high tibial osteotomy with fixation by medial plate fixator for medial compartment arthritis with varus malalignment of the knee. Arthroscopy 24:796–804

    Article  PubMed  Google Scholar 

  23. Oh KJ, Ko YB, Bae JH, Yoon ST, Kim JG (2016) Analysis of knee joint line obliquity after high tibial osteotomy. J Knee Surg 29:649–657

    Article  PubMed  Google Scholar 

  24. Paley D, Tetsworth K (1992) Mechanical axis deviation of the lower limbs. Preoperative planning of uniapical angular deformities of the tibia or femur. Clin Orthop Relat Res 280:48–64

    Google Scholar 

  25. Peña E, Calvo B, Martínez MA, Doblaré M (2006) A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. J Biomech 39:1686–1701

    Article  PubMed  Google Scholar 

  26. Peña E, Calvo B, Martinez MA, Palanca D, Doblaré M (2006) Why lateral meniscectomy is more dangerous than medial meniscectomy. A finite element study. J Orthop Res 24:1001–1110

    Article  PubMed  Google Scholar 

  27. Preston S, Howard J, Naudie D, Somerville L, McAuley J (2014) Total knee arthroplasty after high tibial osteotomy: no differences between medial and lateral osteotomy approaches. Clin Orthop Relat Res 472:105–110

    Article  PubMed  Google Scholar 

  28. Ramappa M, Anand S, Jennings A (2013) Total knee replacement following high tibial osteotomy versus total knee replacement without high tibial osteotomy: a systematic review and meta analysis. Arch Orthop Trauma Surg 133:1587–1593

    Article  PubMed  Google Scholar 

  29. Saragaglia D, Nemer C, Colle PE (2008) Computer-assisted double level osteotomy for severe genu varum. Sports Med Arthrosc 16:91–96

    Article  PubMed  Google Scholar 

  30. Schröter S, Ateschrang A, Löwe W, Nakayama H, Stöckle U, Ihle C (2017) Early full weight-bearing versus 6-week partial weight-bearing after open wedge high tibial osteotomy leads to earlier improvement of the clinical results: a prospective, randomised evaluation. Knee Surg Sports Traumatol Arthrosc 25:325–332

    Article  PubMed  Google Scholar 

  31. Schröter S, Gonser CE, Konstantinidis L, Helwig P, Albrecht D (2011) High complication rate after biplanar open wedge high tibial osteotomy stabilized with a new spacer plate (position HTO plate) without bone substitute. Arthroscopy 27:644–652

    Article  PubMed  Google Scholar 

  32. Shoji H, Insall J (1973) High tibial osteotomy for osteoarthritis of the knee with valgus deformity. J Bone Joint Surg Am 55:963–973

    Article  PubMed  CAS  Google Scholar 

  33. Smith RL, Carter DR, Schurmn DJ (2004) Pressure and shear differentially alter human articular chondrocyte metabolism: a review. l. Clin Orthop Relat Rea 427(Suppl):S89–S95

    Google Scholar 

  34. Staubli AE, De Simoni C, Babst R, Lobenhoffer P (2003) TomoFix: a new LCP-concept for open wedge osteotomy of the medial proximal tibia–early results in 92 cases. Injury 34:B55–B62

    Article  PubMed  Google Scholar 

  35. Strecker W (2006) Planning analysis of knee-adjacent deformities. I. Frontal plane deformities. Oper Orthop Traumatol 18:259–272

    Article  PubMed  Google Scholar 

  36. Takeuchi R, Ishikawa H, Aratake M, Bito H, Saito I, Kumagai K, Akamatsu Y, Saito T (2009) Medial opening wedge high tibial osteotomy with early full weight bearing. Arthroscopy 25:46–53

    Article  PubMed  Google Scholar 

  37. Terauchi M, Shirakura K, Katayama M, Higuchi H, Takagishi K, Kimura M (2002) Varus inclination of the distal femur and high tibial osteotomy. J Bone Joint Surg Br 84:223–226

    Article  PubMed  CAS  Google Scholar 

  38. Van Heerwaarden RJ, Wagenaar F, Hofmann S (2008) Double osteotomies of the femur and the tibia. In: Lobenhoffer P, van Heerwaarden RJ, Staubli AE (eds) Osteotomies around the knee. Georg Thieme, Stuttgart, pp 167–184

    Google Scholar 

  39. Yang NH, Nayeb-Hashemi H, Canavan PK, Vaziri A (2010) Effect of frontal plane tibiofemoral angle on the stress and strain at the knee cartilage during the stance phase of gait. J Orthop Res 28:1539–1547

    Article  PubMed  Google Scholar 

  40. Zheng K, Scholes CJ, Chen J, Parker D, Li Q (2017) Multiobjective optimization of cartilage stress for non-invasive, patient-specific recommendations of high tibial osteotomy correction angle–a novel method to investigate alignment correction. Med Eng Phys 42:26–34

    Article  PubMed  Google Scholar 

  41. Ziegler R, Goebel L, Seidel R, Cucchiarini M, Pape D, Madry H (2015) Effect of open wedge high tibial osteotomy on the lateral tibiofemoral compartment in sheep. Part III: analysis of the microstructure of the subchondral bone and correlations with the articular cartilage and meniscus. Knee Surg Sports Traumatol Arthrosc 23:2704–2714

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaru Higa.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Funding

No funding was received for this study.

Ethical approval

The design of this study was approved by the Review Board of Hyogo College of Medicine (No. 2218).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakayama, H., Schröter, S., Yamamoto, C. et al. Large correction in opening wedge high tibial osteotomy with resultant joint-line obliquity induces excessive shear stress on the articular cartilage. Knee Surg Sports Traumatol Arthrosc 26, 1873–1878 (2018). https://doi.org/10.1007/s00167-017-4680-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-017-4680-x

Keywords

Navigation