Skip to main content
Log in

Effect of tibial slope changes on femorotibial contact kinematics after cruciate-retaining total knee arthroplasty

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The present study was undertaken to evaluate the effect of tibial slope (TS) changes on the femorotibial articular contact kinematics in subjects undergoing posterior cruciate-retaining total knee arthroplasty (CRTKA).

Methods

Eighteen knees in nine patients with medial osteoarthritis who underwent CRTKA using the same size prosthesis were analysed preoperatively and 2 years after TKA. TS changes were calculated on lateral radiographs taken before and after TKA. Knees were classified into two groups according to the change in TS obtained by subtracting the post-operative value from the preoperative value: group 1 (>3°) and group 2 (<3°). The femorotibial articular contact kinematics of knees during weight-bearing flexion were compared between the two groups by two-dimensional/three-dimensional registration.

Results

Group 1 showed a continuous posterior translation of the medial femoral condyle during the process of knee flexion, whereas in group 2 the medial femoral condyle experienced paradoxical anterior motion from 20° to 90° of knee flexion. The lateral femoral condyle continuously moved posteriorly in both groups.

Conclusion

A greater reduction in TS after TKA compared with preoperative TS reduces paradoxical medial femoral condylar movement. This may contribute to improved patient satisfaction after CR TKA.

Level of evidence

III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Baier C, Springorum HR, Gotz J et al (2013) Comparing navigation-based in vivo knee kinematics pre- and postoperatively between a cruciate-retaining and a cruciate-substituting implant. Int Orthop 37(3):407–414

    Article  PubMed  PubMed Central  Google Scholar 

  2. Banks SA, Markovich GD, Hodge WA (1997) In vivo kinematics of cruciate-retaining and -substituting knee arthroplasties. J Arthroplasty 12(3):297–304

    Article  CAS  PubMed  Google Scholar 

  3. Bellemans J, Robijns F, Duerinckx J, Banks S, Vandenneucker H (2005) The influence of tibial slope on maximal flexion after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 13(3):193–196

    Article  CAS  PubMed  Google Scholar 

  4. Dennis DA, Komistek RD, Colwell CE Jr et al (1998) In vivo anteroposterior femorotibial translation of total knee arthroplasty: a multicenter analysis. Clin Orthop Relat Res 356:47–57

    Article  Google Scholar 

  5. Dennis DA, Komistek RD, Hoff WA, Gabriel SM (1996) In vivo knee kinematics derived using an inverse perspective technique. Clin Orthop Relat Res 331:107–117

    Article  Google Scholar 

  6. Dennis DA, Komistek RD, Mahfouz MR (2003) In vivo fluoroscopic analysis of fixed-bearing total knee replacements. Clin Orthop Relat Res 410:114–130

    Article  Google Scholar 

  7. Dennis DA, Komistek RD, Mahfouz MR, Haas BD, Stiehl JB (2003) Multicenter determination of in vivo kinematics after total knee arthroplasty. Clin Orthop Relat Res 416:37–57

    Article  Google Scholar 

  8. Dennis DA, Komistek RD, Scuderi GR, Zingde S (2007) Factors affecting flexion after total knee arthroplasty. Clin Orthop Relat Res 464:53–60

    PubMed  Google Scholar 

  9. Eisenhuth SA, Saleh KJ, Cui Q, Clark CR, Brown TE (2006) Patellofemoral instability after total knee arthroplasty. Clin Orthop Relat Res 446:149–160

    Article  PubMed  Google Scholar 

  10. Fujimoto E, Sasashige Y, Tomita T et al (2014) Significant effect of the posterior tibial slope on the weight-bearing, midflexion in vivo kinematics after cruciate-retaining total knee arthroplasty. J Arthroplasty 29(12):2324–2330

    Article  PubMed  Google Scholar 

  11. Harman MK, Banks SA, Hodge WA (2001) Polyethylene damage and knee kinematics after total knee arthroplasty. Clin Orthop Relat Res 392:383–393

    Article  Google Scholar 

  12. Hoff WA, Komistek RD, Dennis DA, Gabriel SM, Walker SA (1998) Three-dimensional determination of femoral-tibial contact positions under in vivo conditions using fluoroscopy. Clin Biomech (Bristol, Avon) 13(7):455–472

    Article  Google Scholar 

  13. Kane RL, Saleh KJ, Wilt TJ, Bershadsky B (2005) The functional outcomes of total knee arthroplasty. J Bone Joint Surg Am 87(8):1719–1724

    PubMed  Google Scholar 

  14. Kitagawa A, Tsumura N, Chin T et al (2010) In vivo comparison of knee kinematics before and after high-flexion posterior cruciate-retaining total knee arthroplasty. J Arthroplasty 25(6):964–969

    Article  PubMed  Google Scholar 

  15. Li G, Wuerz TH, DeFrate LE (2004) Feasibility of using orthogonal fluoroscopic images to measure in vivo joint kinematics. J Biomech Eng 126(2):314–318

    Article  PubMed  Google Scholar 

  16. Massin P, Gournay A (2006) Optimization of the posterior condylar offset, tibial slope, and condylar roll-back in total knee arthroplasty. J Arthroplasty 21(6):889–896

    Article  PubMed  Google Scholar 

  17. Matsuzaki T, Matsumoto T, Muratsu H et al (2013) Kinematic factors affecting postoperative knee flexion after cruciate-retaining total knee arthroplasty. Int Orthop 37(5):803–808

    Article  PubMed  PubMed Central  Google Scholar 

  18. Moro-oka TA, Muenchinger M, Canciani JP, Banks SA (2007) Comparing in vivo kinematics of anterior cruciate-retaining and posterior cruciate-retaining total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 15(1):93–99

    Article  PubMed  Google Scholar 

  19. Roberts VI, Esler CN, Harper WM (2007) A 15-year follow-up study of 4606 primary total knee replacements. J Bone Joint Surg Br 89(11):1452–1456

    Article  CAS  PubMed  Google Scholar 

  20. Robertsson O, Dunbar M, Pehrsson T, Knutson K, Lidgren L (2000) Patient satisfaction after knee arthroplasty: a report on 27,372 knees operated on between 1981 and 1995 in Sweden. Acta Orthop Scand 71(3):262–267

    Article  CAS  PubMed  Google Scholar 

  21. Seon JK, Park JK, Shin YJ et al (2011) Comparisons of kinematics and range of motion in high-flexion total knee arthroplasty: cruciate retaining vs. substituting designs. Knee Surg Sports Traumatol Arthrosc 19(12):2016–2022

    Article  PubMed  Google Scholar 

  22. Sharkey PF, Hozack WJ, Rothman RH, Shastri S, Jacoby SM (2002) Insall Award paper. Why are total knee arthroplasties failing today? Clin Orthop Relat Res 404:7–13

    Article  Google Scholar 

  23. Shimizu N, Tomita T, Yamazaki T, Yoshikawa H, Sugamoto K (2011) The effect of weight-bearing condition on kinematics of a high-flexion, posterior-stabilized knee prosthesis. J Arthroplasty 26(7):1031–1037

    Article  PubMed  Google Scholar 

  24. Shimizu N, Tomita T, Yamazaki T, Yoshikawa H, Sugamoto K (2013) Posterior sliding of the femur during stair ascending and descending in a high-flex posterior stabilized total knee arthroplasty. J Arthroplasty 28(10):1707–1711

    Article  PubMed  Google Scholar 

  25. Stiehl JB, Komistek RD, Dennis DA (1999) Detrimental kinematics of a flat on flat total condylar knee arthroplasty. Clin Orthop Relat Res 365:139–148

    Article  Google Scholar 

  26. Stiehl JB, Komistek RD, Dennis DA, Paxson RD, Hoff WA (1995) Fluoroscopic analysis of kinematics after posterior-cruciate-retaining knee arthroplasty. J Bone Joint Surg Br 77(6):884–889

    CAS  PubMed  Google Scholar 

  27. Utzschneider S, Goettinger M, Weber P et al (2011) Development and validation of a new method for the radiologic measurement of the tibial slope. Knee Surg Sports Traumatol Arthrosc 19(10):1643–1648

    Article  CAS  PubMed  Google Scholar 

  28. Victor J, Bellemans J (2006) Physiologic kinematics as a concept for better flexion in TKA. Clin Orthop Relat Res 452:53–58

    Article  PubMed  Google Scholar 

  29. Watanabe T, Ishizuki M, Muneta T, Banks SA (2013) Knee kinematics in anterior cruciate ligament-substituting arthroplasty with or without the posterior cruciate ligament. J Arthroplasty 28(4):548–552

    Article  PubMed  Google Scholar 

  30. Yoshiya S, Matsui N, Komistek RD et al (2005) In vivo kinematic comparison of posterior cruciate-retaining and posterior stabilized total knee arthroplasties under passive and weight-bearing conditions. J Arthroplasty 20(6):777–783

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Xq., Peng, Aq., Wang, F. et al. Effect of tibial slope changes on femorotibial contact kinematics after cruciate-retaining total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 25, 3549–3555 (2017). https://doi.org/10.1007/s00167-016-4384-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-016-4384-7

Keywords

Navigation