Skip to main content
Log in

Outcome reporting following navigated high tibial osteotomy of the knee: a systematic review

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

This systematic review evaluates radiographic and clinical outcome reporting following navigated high tibial osteotomy (HTO). Conventional HTO was used as a control to compare outcomes and furthermore investigate the quality of evidence in studies reporting outcomes for navigated HTO. It was hypothesized that navigated HTO will show superior clinical and radiographic outcomes compared to conventional HTO.

Methods

Two independent reviewers searched PubMed, Ovid (MEDLINE), EMBASE, and Cochrane databases for studies reporting outcomes following navigated HTO. Titles, abstracts, and full-text were screened in duplicate using an a priori inclusion and exclusion criteria. Descriptive statistics were calculated using Minitab ® statistical software. Methodological Index for Nonrandomized Studies (MINORS) and Cochrane Risk of Bias Scores were used to evaluate methodological quality.

Results

Thirty-four studies which involved 2216 HTOs were analysed in this review, 1608 (72.6 %) navigated HTOs and 608 (27.4 %) conventional HTOs. The majority of studies were of level IV evidence (16). Clinical outcomes were reported in knee and function scores or range of motion comparisons. Postoperative clinical and functional scores were improved by navigated HTO although it is not demonstrated if there is significant improvement compared to conventional HTO. Most common clinical outcome score reported was Lysholm scores (6) which report postoperative scores of 87.8 (standard deviation 5.9) and 88.8 (standard deviation 5.9) for conventional and navigation-assisted HTO, respectively. Radiographic outcomes reported commonly were weight-bearing mechanical axis, coronal plane angle, and posterior tibial slope angle in the sagittal plane. Studies have shown HTO gives significant correction of mechanical alignment and navigated HTO produces significantly less change in posterior tibial slope postoperatively compared to conventional. The mean MINORS for the 17 non-comparative studies was 9/16, and 15/24 for the 14 non-randomized comparative studies.

Conclusion

Navigation HTO results in improved mechanical axis alignment and demonstrates significantly better control over the tibial slope angle change postoperatively compared to conventional methods; however, these improvements have not yet been reflected in clinical outcome scores. Overall the studies report HTO does create significantly improved knee scores and functions compared to patients’ preoperative ratings regardless of technique. Future studies on HTO outcomes need to focus on consistency of outcome reporting.

Level of evidence

IV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AKS:

American knee society

HTO:

High tibial osteotomy

ICC:

Intraclass correlation coefficient

MINORS:

Methodological index for nonrandomized studies

References

  1. Akamatsu Y, Mitsugi N, Mochida Y, Taki N, Kobayashi H, Takeuchi R, Saito T (2012) Navigated opening wedge high tibial osteotomy improves intraoperative correction angle compared with conventional method. Knee Surg Sports Traumatol Arthrosc 20(3):586–593

    Article  CAS  PubMed  Google Scholar 

  2. Akamatsu Y, Kobayashi H, Kusayama Y, Kumagai K, Saito T (2016) Comparative study of opening-wedge high tibial osteotomy with and without a combined computed tomography–based and image-free navigation system. Arthroscopy. doi:10.1016/j.arthro.2016.02.018

    PubMed  Google Scholar 

  3. Akizuki S, Shibakawa A, Takizawa T, Yamazaki I, Horiuchi H (2008) The long-term outcome of high tibial osteotomy. Bone Joint J 90(5):592–596

    Article  CAS  Google Scholar 

  4. Bae DK, Song SJ, Yoon KH (2009) Closed-wedge high tibial osteotomy using computer-assisted surgery compared to the conventional technique. Bone Joint J 91-B(9):1164–1171

    Article  Google Scholar 

  5. Bae DK, Song SJ, Kim HJ, Seo JW (2013) Change in limb length after high tibial osteotomy using computer-assisted surgery: a comparative study of closed-and open-wedge osteotomies. Knee Surg Sports Traumatol Arthrosc 21(1):120–126

    Article  PubMed  Google Scholar 

  6. Bae DK, Ko YW, Kim SJ, Baek JH, Song SJ (2016a) Computer-assisted navigation decreases the change in the tibial posterior slope angle after closed-wedge high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-016-4032-2

    Google Scholar 

  7. Bae DK, Park CH, Kim EJ, Song SJ (2016b) Medial cortical fractures in computer-assisted closing-wedge high tibial osteotomy. Knee 23(2):295–299

    Article  PubMed  Google Scholar 

  8. Bae DK, Song SJ, Kim KI, Hur D, Jeong HY (2016c) Mid-term survival analysis of closed wedge high tibial osteotomy: a comparative study of computer-assisted and conventional techniques. Knee 23(2):283–288

    Article  PubMed  Google Scholar 

  9. Bauer GC, Insall J, Koshino T (1969) Tibial osteotomy in gonarthrosis (osteo-arthritis of the knee). J Bone Joint Surg 51(8):1545–1563

    Article  CAS  PubMed  Google Scholar 

  10. Blakeney WG, Khan RJ, Wall SJ (2011) Computer-assisted techniques versus conventional guides for component alignment in total knee arthroplasty: a randomized controlled trial. J Bone Joint Surg Am 93(15):1377–1384

    Article  PubMed  Google Scholar 

  11. Brouwer RW, Huizinga MR, Duivenvoorden T, van Raaij TM, Verhagen AP, Bierma-Zeinstra SMA, Verhaar JAN (2014) Osteotomy for treating knee osteoarthritis. Cochrane Database Syst Rev. doi:10.1002/14651858.CD004019.pub4

    PubMed  Google Scholar 

  12. Collins NJ, Misra D, Felso DT, Crossley KM, Roos EM (2011) Measures of knee function: International Knee Documentation Committee (IKDC) Subjective Knee Evaluation Form, Knee Injury and Osteoarthritis Outcome Score (KOOS), Knee Injury and Osteoarthritis Outcome Score Physical Function Short Form (KOOS-PS), Knee Outcome Survey Activities of Daily Living Scale (KOS-ADL), Lysholm Knee Scoring Scale, Oxford Knee Score (OKS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Activity Rating Scale (ARS), and Tegner Activity Score (TAS). Arthritis Care Res 63(S11):S208–S228

    Article  Google Scholar 

  13. Coventry MB (1965) Osteotomy of upper portion of tibia for degenerative arthritis of knee—a preliminary report. J Bone Joint Surg Am 47:984–990

    Article  CAS  PubMed  Google Scholar 

  14. Decking R, Markmann Y, Fuchs J, Puhl W, Scharf HP (2005) Leg axis after computer-navigated total knee arthroplasty: a prospective randomized trial comparing computer-navigated and manual implantation. J Arthroplasty 20(3):282–288

    Article  PubMed  Google Scholar 

  15. Demange MK, Camanho GL, Pécora JR, Gobbi RG, Tirico LEP, e Albuquerque RFDM (2011) Simultaneous anterior cruciate ligament reconstruction and computer-assisted open-wedge high tibial osteotomy: a report of eight cases. Knee 18(6):387–391

    Article  PubMed  Google Scholar 

  16. Ellis RE, Tso CY, Rudan JF, Harrison MM (1999) A surgical planning and guidance system for high tibial osteotomy. Comput Aided Surg 4(5):264–274

    Article  CAS  PubMed  Google Scholar 

  17. Gebhard F, Krettek C, Hüfner T et al (2011) Reliability of computer-assisted surgery as an intraoperative ruler in navigated high tibial osteotomy. Arch Ortho Traum Surg 131(3):297–302. doi:10.1007/s00402-010-1145-9

    Article  Google Scholar 

  18. Giffin JR, Stabile KJ, Zantop T, Vogrin TM, Woo SL, Harner CD (2007) Importance of tibial slope for stability of the posterior cruciate ligament–deficient knee. Am J Sports Med 35(9):1443–1449

    Article  PubMed  Google Scholar 

  19. Giffin JR, Vogrin TM, Zantop T, Woo SL, Harner CD (2004) Effects of increasing tibial slope on the biomechanics of the knee. Am J Sports Med 32(2):376–382

    Article  PubMed  Google Scholar 

  20. Goleski P, Warkentine B, Lo D, Gyuricza C, Kendoff D, Pearle AD (2008) Reliability of navigated lower limb alignment in high tibial osteotomies. Am J Sports Med 36(11):2179–2186

    Article  PubMed  Google Scholar 

  21. Han SB, Lee DH (2016) Correlations between navigation and radiographic measures of alignment. J Knee Surg. doi:10.1055/s-00000161

    PubMed  Google Scholar 

  22. Han SB, Park HJ, Lee DH (2016) Ability of an intentionally smaller anterior than posterior gap to reduce the sagittal tibial slope in opening wedge high tibial osteotomy. BMC Musculoskelet Disord 17(1):1

    Article  Google Scholar 

  23. Hankemeier S, Hufner T, Wang G, Kendoff D, Zeichen J, Zheng G, Krettek C (2006) Navigated open-wedge high tibial osteotomy: advantages and disadvantages compared to the conventional technique in a cadaver study. Knee Surg Sports Traumatol Arthrosc 14(10):917–921

    Article  CAS  PubMed  Google Scholar 

  24. Hankemeier S, Hufner T, Wang G et al (2005) Navigated intraoperative analysis of lower limb alignment. Arch Orthop Trauma Surg 125(8):531–535

    Article  PubMed  Google Scholar 

  25. Hasan K, Rahman QA, Zalzal P (2015) Navigation versus conventional high tibial osteotomy: systematic review. SpringerPlus. 4:271. doi:10.1186/s40064-015-1040-5

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hasan KA, De Sa D, Khan M, Pazionis T, Zalzal P (2013) Navigation versus conventional high tibial osteotomy: systematic review OA Ortho 1(2):14

    Google Scholar 

  27. Hauschild O, Konstantinidis L, Strohm PC, Niemeyer P, Suedkamp NP, Helwig P (2009) Reliability of leg alignment using the OrthoPilot system depends on knee position: a cadaveric study. Knee Surg Sports Traumatol Arthrosc 17(10):1143–1151

    Article  PubMed  Google Scholar 

  28. Heijens E, Kornherr P, Meister C (2009) The role of navigation in high tibial osteotomy: a study of 50 patients. Orthop 32(10 Suppl):40–43

    Article  Google Scholar 

  29. Heijens E, Kornherr P, Meister C (2016) The coronal hypomochlion: a tipping point of clinical relevance when planning valgus producing high tibial osteotomies. Bone Joint J 98(5):628–633

    Article  PubMed  Google Scholar 

  30. Hetaimish BM, Khan MM, Simunovic N, Al-Harbi HH, Bhandari M, Zalzal PK (2012) Meta-analysis of navigation vs conventional total knee arthroplasty. J Arthroplasty 27(6):1177–1182

    Article  PubMed  Google Scholar 

  31. Higgins JP, Altman DG, Gøtzsche PC et al (2011) The Cochrane collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343:d5928

    Article  PubMed  PubMed Central  Google Scholar 

  32. Iorio R, Vadalà A, Giannetti S, Pagnottelli M, Di Sette P, Conteduca F, Ferretti A (2010) Computer-assisted high tibial osteotomy: preliminary results. Orthopedics 33(10):82–86

    Article  PubMed  Google Scholar 

  33. Iorio R, Pagnottelli M, Vadala A et al (2013) Open-wedge high tibial osteotomy: comparison between manual and computer-assisted techniques. Knee Surg Sports Traumatol Arthrosc 21(1):113–119

    Article  CAS  PubMed  Google Scholar 

  34. Keppler P, Gebhard F, Grützner PA et al (2004) Computer aided high tibial open wedge osteotomy. Injury 35(1):68–78

    Article  Google Scholar 

  35. Kim SJ, Koh YG, Chun YM, Kim YC, Park YS, Sung CH (2009) Medial opening wedge high-tibial osteotomy using a kinematic navigation system versus a conventional method: a 1-year retrospective, comparative study. Knee Surg Sports Traumatol Arthrosc 17(2):128–134

    Article  CAS  PubMed  Google Scholar 

  36. Kim TK, Chang CB, Lee KH, Cho HJ, Je MS, Won HH, Kang YG (2012) Use of simple algorithms to predict screw length facilitates navigation-controlled medial opening-wedge osteotomy using the TomoFix HTO system. Orthopedics 35(10):22–28

    Article  PubMed  Google Scholar 

  37. Kocher MS, Steadman JR, Briggs KK, Sterett WI, Hawkins RJ (2004) Reliability, validity, and responsiveness of the Lysholm knee scale for various chondral disorders of the knee. J Bone Joint Surg 86(6):1139–1145

    Article  PubMed  Google Scholar 

  38. Kyung BS, Kim JG, Jang KM, Chang M, Moon YW, Ahn JH, Wang JH (2013) Are navigation systems accurate enough to predict the correction angle during high tibial osteotomy? Comparison of navigation systems with 3-dimensional computed tomography and standing radiographs. Am J Sports Med 41(10):2368–2374

    Article  PubMed  Google Scholar 

  39. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33(1):159–174

    Article  CAS  PubMed  Google Scholar 

  40. Lee DH, Nha KW, Park SJ, Han SB (2012) Preoperative and postoperative comparisons of navigation and radiologic limb alignment measurements after high tibial osteotomy. Arthrosc J Arthrosc Relat Surg 28(12):1842–1850

    Article  Google Scholar 

  41. Lee DH, Han SB, Oh KJ, Lee JS, Kwon JH, Kim JI, Patnaik S, Shetty GM, Nha KW (2014) The weight-bearing scanogram technique provides better coronal limb alignment than the navigation technique in open high tibial osteotomy. Knee 21(2):451–455

    Article  PubMed  Google Scholar 

  42. Lo WN, Cheung KW, Yung SH, Chiu KH (2009) Arthroscopy-assisted computer navigation in high tibial osteotomy for varus knee deformity. J Orthop Surgery 17(1):51

    Article  CAS  Google Scholar 

  43. Lorenz S, Morgenstern M, Imhoff AB (2007) Development of an image-free navigation tool for high tibial osteotomy. Oper Tech Orthop 17(1):58–65

    Article  Google Scholar 

  44. Lützner J, Gross AF, Günther KP, Kirschner S (2010) Precision of navigated and conventional open-wedge high tibial osteotomy in a cadaver study. Eur J Med Res 15(3):117

    Article  PubMed  PubMed Central  Google Scholar 

  45. Marx RG, Jones EC, Allen AA et al (2001) Reliability, validity, and responsiveness of four knee outcome scales for athletic patients. J Bone Joint Surg Am 83(10):1459–1469

    Article  PubMed  Google Scholar 

  46. Maurer F, Wassmer G (2006) High tibial osteotomy: Does navigation improve results? Orthop 29(10):S130–S132

    Google Scholar 

  47. Metsavaht L, Leporace G, Riberto M, Sposito MMM, Del Castillo LN, Oliveira LP, Batista LA (2012) Translation and cross-cultural adaptation of the lower extremity functional scale into a Brazilian Portuguese version and validation on patients with knee injuries. J Orthop Sport Phys Ther 42(11):932–939

    Article  Google Scholar 

  48. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Reprint–preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Phys Ther 89(9):873–880

    PubMed  Google Scholar 

  49. Moonot P, Medalla GA, Matthews D, Kalairajah Y, Field RE (2009) Correlation between the Oxford Knee and American Knee Society scores at mid-term follow-up. J Knee Surg 22(03):226–230

    Article  PubMed  Google Scholar 

  50. Na YG, Eom SH, Kim SJ, Chang MJ, Kim TK (2016) The use of navigation in medial opening wedge high tibial osteotomy can improve tibial slope maintenance and reduce radiation exposure. Int Orthop 40(3):499–507

    Article  PubMed  Google Scholar 

  51. Nourbakhsh M, Zarezadeh A, Shemshaki H, Etemadifar MR, Moezi M, Mazoochian F (2013) Translation and cultural adaptation of the Oxford hip score for iranian population. Int J Prev Med 4(2):141

    PubMed  PubMed Central  Google Scholar 

  52. Portney LG, Watkins MP (2000) Foundations of clinical research: applications to practice, 2nd edn. Upper Saddle River, Prentice Hall Health, New Jersey, pp 90–93

    Google Scholar 

  53. Reising K, Strohm PC, Hauschild O, Schmal H, Khattab M, Südkamp NP, Niemeyer P (2013) Computer-assisted navigation for the intraoperative assessment of lower limb alignment in high tibial osteotomy can avoid outliers compared with the conventional technique. Knee Surg Sports Traumatol Arthrosc 21(1):181–188

    Article  PubMed  Google Scholar 

  54. Ribeiro CH, Severino NR, de Barros Fucs PM (2013) Preoperative surgical planning versus navigation system in valgus tibial osteotomy: a cross-sectional study. Int Orthop 37(8):1483–1486

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ribeiro CH, Severino NR, de Barros Fucs PM (2014) Opening wedge high tibial osteotomy: navigation system compared to the conventional technique in a controlled clinical study. Int Orthop 38(8):1627–1631

    Article  PubMed  PubMed Central  Google Scholar 

  56. Risberg MA, Holm I, Steen H, Beynnon BD (1999) Sensitivity to changes over time for the IKDC form, the Lysholm score, and the Cincinnati knee score A prospective study of 120 ACL reconstructed patients with a 2-year follow-up. Knee Surg Sports Traumatol Arthrosc 7(3):152–159

    Article  CAS  PubMed  Google Scholar 

  57. Roos EM, Toksvig-Larsen S (2003) Knee injury and Osteoarthritis Outcome Score (KOOS)–validation and comparison to the WOMAC in total knee replacement. Health Qual Life Outcomes 1(1):1

    Article  Google Scholar 

  58. Rosemann T, Szecsenyi J (2007) Cultural adaptation and validation of a German version of the Arthritis Impact Measurement Scales (AIMS2). Osteoarthr Cartil 15(10):1128–1133

    Article  CAS  PubMed  Google Scholar 

  59. Rossi R, Bonasia DE, Amendola A (2011) The role of high tibial osteotomy in the varus knee. J Am Acad of Orthop Surg 19(10):590

    Article  Google Scholar 

  60. Saragaglia D, Chedal-Bornu B (2014) Computer-assisted osteotomy for valgus knees: Medium-term results of 29 cases. Orthop Traumatolog Surg Res 5(100):527–530

    Article  Google Scholar 

  61. Saragaglia D, Roberts J (2005) Navigated osteotomies around the knee in 170 patients with osteoarthritis secondary to genu varum. Orthopedics 28(10):S1269–1274

    PubMed  Google Scholar 

  62. Saragaglia D, Blaysat M, Mercier N, Grimaldi M (2012) Results of forty two computer-assisted double level osteotomies for severe genu varum deformity. Int Orthop 36(5):999–1003

    Article  PubMed  Google Scholar 

  63. Schröter S, Ihle C, Elson DW, Döbele S, Stöckle U, Ateschrang A (2016) Surgical accuracy in high tibial osteotomy: coronal equivalence of computer navigation and gap measurement. Knee Surg Sports Traumatol Arthrosc 1–8. doi:10.1007/s00167-016-3983-7

  64. Shelburne KB, Kim H-J, Sterett WI, Pandy MG (2011) Effect of posterior tibial slope on knee biomechanics during functional activity. J Orthop Res 29:223–231. doi:10.1002/jor.21242

    Article  PubMed  Google Scholar 

  65. Singh JA, Schleck C, Harmsen WS, Lewallen D (2013) Validation of the hospital for special surgery knee questionnaire: convergent validity, responsiveness sensitivity to change. Arthritis Rheum 65:S820

    Google Scholar 

  66. Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J (2003) Methodological index for non-randomized studies (Minors): development and validation of a new instrument. ANZ J Surg 73(9):712–716. doi:10.1046/j.1445-2197.2003.02748.x

    Article  PubMed  Google Scholar 

  67. Song EK, Seon JK, Park SJ (2007) How to avoid unintended increase of posterior slope in navigation-assisted open-wedge high tibial osteotomy. Orthopedics 30(10 Suppl):S127

    PubMed  Google Scholar 

  68. Song EK, Seon JK, Park SJ, Seo HY (2008) Navigated open wedge high tibial osteotomy. Sports Med Arthrosc Rev 16(2):84–90

    Article  Google Scholar 

  69. Stanley JC, Robinson KG, Devitt BM, Richmond AK, Webster KE, Whitehead TS, Feller JA (2016) Computer assisted alignment of opening wedge high tibial osteotomy provides limited improvement of radiographic outcomes compared to flouroscopic alignment. Knee 23(2):289–294

    Article  PubMed  Google Scholar 

  70. Tanner SM, Dainty KN, Marx RG, Kirkley A (2007) Knee-specific quality-of-life instruments which ones measure symptoms and disabilities most important to patients? Am J Sports Med 35(9):1450–1458

    Article  PubMed  Google Scholar 

  71. Tilley S, Thomas N (2010) Focus on what knee scoring system. J Bone Joint Surg. Available at http://www.boneandjoint.org.uk/content/focus/what-knee-scoring-system. Accessed 13 July 2016

  72. Wright JG (2005) Levels of evidence and grades of recommendations. AAOS Bull. http://www2.aaos.org/bulletin/apr05/fline9.asp. Accessed 12 July 2016

  73. Yamamoto Y, Ishibashi Y, Tsuda E, Tsukada H, Kimura Y, Toh S (2008) Validation of computer-assisted open-wedge high tibial osteotomy using three-dimensional navigation. Orthop 31(10):68

    Google Scholar 

  74. Yim JH, Seon JK, Song EK (2012) Posterior tibial slope in medial opening-wedge high tibial osteotomy: 2-D versus 3-D navigation. Orthopedics 35(10):60–63

    Article  PubMed  Google Scholar 

Download references

Authors’ contributions

JY and JK carried out the search, screening process, and assessment of study quality. JY drafted the manuscript. JK contributed to the statistical calculations of the manuscript. ORA and VM conceived the study, and provided key expert input and editing throughout the process. MK edited the manuscript and provided key expert input. NS provided feedback on methodological and statistical aspects. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olufemi R. Ayeni.

Ethics declarations

Conflict of interest

The author(s) declare that they have no conflict of interest.

Funding

This study received no funding to complete.

Ethical approval

This study did not require ethics approval at its institution.

Informed consent

As there was no individual participants in this study informed consent was not required.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Musahl, V., Kay, J. et al. Outcome reporting following navigated high tibial osteotomy of the knee: a systematic review. Knee Surg Sports Traumatol Arthrosc 24, 3529–3555 (2016). https://doi.org/10.1007/s00167-016-4327-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-016-4327-3

Keywords

Navigation