Skip to main content

Advertisement

Log in

Effects of different femoral tunnel positions on tension changes in anterolateral ligament reconstruction

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Several kinds of anterolateral ligament (ALL) reconstructions to augment intra-articular anterior cruciate ligament reconstruction to better control anterolateral rotational instability (ALRI) have been reported. However, the optimal femoral attachment site for ALL reconstruction is still unclear. The purpose of this study was to investigate the effects of different femoral attachment sites on the tension changes through knee motions in different situations in order to determine a recommended femoral attachment site for ALL reconstruction.

Methods

Six fresh-frozen cadaveric knees were included. ALL reconstructions were performed with three different femoral attachment sites (F1: 2 mm anterior and 2 mm distal to the lateral epicondyle, F2: 4 mm posterior and 8 mm proximal to the lateral epicondyle and F3: position for the lateral extra-articular tenodesis). The graft tension changes were measured by a graft tensioning system during knee flexion–extension and manual maximum internal/external tibial rotation in the following situations: (1) intact, (2) ALL cut, (3) ALL and ACL cut and (4) ALL cut and ACL reconstructed. Effects of the different femoral attachment sites, the route superficial or deep to the LCL, and the situations of (1) to (4) were calculated via repeated-measures analysis of variance.

Results

The tension of F1 was higher in flexion and lower in extension, whereas the tension of F2 and F3 was higher in extension and lower in flexion. F2 showed the smallest tension change. Situations of (1) to (4) did not affect tension changes. The graft tension became higher with internal rotation and lower with external rotation regardless of femoral attachment sites or situations.

Conclusion

With F2—4 mm posterior and 8 mm proximal to the lateral epicondyle—the reconstructed ALL had the least tension change with only a slight increase in tension as the knee extended. This result indicates that F2 is recommended for ALL reconstruction to better control ALRI, which will help determine the optimal femoral tunnel position for ALL reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Amis AAZT (1995) Isometricity and graft placement during anterior cruciate ligament reconstruction. Knee 2:5–17

    Article  Google Scholar 

  2. Ayeni OR, Chahal M, Tran MN, Sprague S (2012) Pivot shift as an outcome measure for ACL reconstruction: a systematic review. Knee Surg Sports Traumatol Arthrosc 20:767–777

    Article  PubMed  Google Scholar 

  3. Bird JH, Carmont MR, Dhillon M et al (2011) Validation of a new technique to determine midbundle femoral tunnel position in anterior cruciate ligament reconstruction using 3-dimensional computed tomography analysis. Arthroscopy 27:1259–1267

    Article  PubMed  Google Scholar 

  4. Caterine S, Litchfield R, Johnson M, Chronik B, Getgood A (2015) A cadaveric study of the anterolateral ligament: re-introducing the lateral capsular ligament. Knee Surg Sports Traumatol Arthrosc 23:3186–3195

    Article  PubMed  Google Scholar 

  5. Claes S, Vereecke E, Maes M, Victor J, Verdonk P, Bellemans J (2013) Anatomy of the anterolateral ligament of the knee. J Anat 223:321–328

    Article  PubMed  PubMed Central  Google Scholar 

  6. Daggett M, Ockuly AC, Cullen M et al (2015) Femoral origin of the anterolateral ligament: an anatomic analysis. Arthroscopy 32:835–841

    Article  PubMed  Google Scholar 

  7. Dodds AL, Halewood C, Gupte CM, Williams A, Amis AA (2014) The anterolateral ligament: anatomy, length changes and association with the Segond fracture. Bone Joint J 96-B:325–331

    Article  CAS  PubMed  Google Scholar 

  8. Draganich LF, Reider B, Miller PR (1989) An in vitro study of the Muller anterolateral femorotibial ligament tenodesis in the anterior cruciate ligament deficient knee. Am J Sports Med 17:357–362

    Article  CAS  PubMed  Google Scholar 

  9. Engebretsen L, Lew WD, Lewis JL, Hunter RE, Benum P (1990) Anterolateral rotatory instability of the knee. cadaver study of extraarticular patellar-tendon transposition. Acta Orthop Scand 61:225–230

    Article  CAS  PubMed  Google Scholar 

  10. Galway RDBA, MacIntosh DL (1972) Pivot shift: a clinical sign of symptomatic anterior cruciate insufficiency. J Bone Joint Surg Br 54:763–764

    Google Scholar 

  11. Helito CP, Helito PV, Bonadio MB et al (2014) Evaluation of the length and isometric pattern of the anterolateral ligament with serial computer tomography. Orthop J Sports Med 2:2325967114562205

    Article  PubMed  PubMed Central  Google Scholar 

  12. Helito CP, Bonadio MB, Gobbi RG et al (2015) Combined intra- and extra-articular reconstruction of the anterior cruciate ligament: the reconstruction of the knee anterolateral ligament. Arthrosc Tech 4:e239–e244

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kennedy MI, Claes S, Fuso FA et al (2015) The anterolateral ligament: an anatomic, radiographic, and biomechanical analysis. Am J Sports Med 43:1606–1615

    Article  PubMed  Google Scholar 

  14. Kittl C, Halewood C, Stephen JM et al (2015) Length change patterns in the lateral extra-articular structures of the knee and related reconstructions. Am J Sports Med 43:354–362

    Article  PubMed  Google Scholar 

  15. Kittl C, El-Daou H, Athwal KK et al (2016) The role of the anterolateral structures and the ACL in controlling laxity of the intact and ACL-deficient knee. Am J Sports Med 44:345–354

    Article  PubMed  Google Scholar 

  16. Kocher MS, Steadman JR, Briggs K, Zurakowski D, Sterett WI, Hawkins RJ (2002) Determinants of patient satisfaction with outcome after anterior cruciate ligament reconstruction. J Bone Joint Surg Am 84-A:1560–1572

    Article  PubMed  Google Scholar 

  17. Koga H, Muneta T, Yagishita K et al (2013) Effect of posterolateral bundle graft fixation angles on graft tension curves and load sharing in double-bundle anterior cruciate ligament reconstruction using a transtibial drilling technique. Arthroscopy 29:529–538

    Article  PubMed  Google Scholar 

  18. Lee KW, Hwang YS, Chi YJ, Yang DS, Kim HY, Choy WS (2014) Anatomic single bundle anterior cruciate ligament reconstruction by low accessory anteromedial portal technique: an in vivo 3D CT study. Knee Surg Relat Res 26:97–105

    Article  PubMed  PubMed Central  Google Scholar 

  19. Losee RE, Johnson TR, Southwick WO (1978) Anterior subluxation of the lateral tibial plateau: a diagnostic test and operative repair. J Bone Joint Surg Am 60:1015–1030

    Article  CAS  PubMed  Google Scholar 

  20. Marcacci M, Zaffagnini S, Giordano G, Iacono F, Presti ML (2009) Anterior cruciate ligament reconstruction associated with extra-articular tenodesis: a prospective clinical and radiographic evaluation with 10- to 13-year follow-up. Am J Sports Med 37:707–714

    Article  PubMed  Google Scholar 

  21. Matsumoto H, Seedhom BB (1994) Treatment of the pivot-shift intraarticular versus extraarticular or combined reconstruction procedures: a biomechanical study. Clin Orthop Relat Res 299:298–304

    Google Scholar 

  22. Mochizuki T, Muneta T, Nagase T, Shirasawa S, Akita KI, Sekiya I (2006) Cadaveric knee observation study for describing anatomic femoral tunnel placement for two-bundle anterior cruciate ligament reconstruction. Arthroscopy 22:356–361

    Article  PubMed  Google Scholar 

  23. Monaco E, Ferretti A, Labianca L et al (2012) Navigated knee kinematics after cutting of the ACL and its secondary restraint. Knee Surg Sports Traumatol Arthrosc 20:870–877

    Article  CAS  PubMed  Google Scholar 

  24. Musahl V, Rahnemai-Azar AA, van Eck CF, Guenther D, Fu FH (2016) Anterolateral ligament of the knee, fact or fiction? Knee Surg Sports Traumatol Arthrosc 24:2–3

    Article  PubMed  Google Scholar 

  25. Nitri M, Rasmussen MT, Williams BT et al (2016) An in vitro robotic assessment of the anterolateral ligament, part 2: anterolateral ligament reconstruction combined with anterior cruciate ligament reconstruction. Am J Sports Med 44:593–601

    Article  PubMed  Google Scholar 

  26. Rasmussen MT, Nitri M, Williams BT et al (2016) An in vitro robotic assessment of the anterolateral ligament, part 1: secondary role of the anterolateral ligament in the setting of an anterior cruciate ligament injury. Am J Sports Med 44:585–592

    Article  PubMed  Google Scholar 

  27. Saiegh YA, Suero EM, Guenther D et al (2015) Sectioning the anterolateral ligament did not increase tibiofemoral translation or rotation in an ACL-deficient cadaveric model. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-015-3787-1

    PubMed  Google Scholar 

  28. Seo SS, Kim CW, Kim JG, Jin SY (2013) Clinical results comparing transtibial technique and outside in technique in single bundle anterior cruciate ligament reconstruction. Knee Surg Relat Res 25:133–140

    Article  PubMed  PubMed Central  Google Scholar 

  29. Smith JO, Yasen SK, Lord B, Wilson AJ (2015) Combined anterolateral ligament and anatomic anterior cruciate ligament reconstruction of the knee. Knee Surg Sports Traumatol Arthrosc 23:3151–3156

    Article  PubMed  Google Scholar 

  30. Sonnery-Cottet B, Lutz C, Daggett M et al (2016) The involvement of the anterolateral ligament in rotational control of the knee. Am J Sports Med 44:1209–1214

    Article  PubMed  Google Scholar 

  31. Sonnery-Cottet B, Thaunat M, Freychet B, Pupim BH, Murphy CG, Claes S (2015) Outcome of a combined anterior cruciate ligament and anterolateral ligament reconstruction technique with a minimum 2-year follow-up. Am J Sports Med 43:1598–1605

    Article  PubMed  Google Scholar 

  32. Vincent JP, Magnussen RA, Gezmez F et al (2012) The anterolateral ligament of the human knee: an anatomic and histologic study. Knee Surg Sports Traumatol Arthrosc 20:147–152

    Article  PubMed  Google Scholar 

  33. Zarins B, Rowe CR (1986) Combined anterior cruciate-ligament reconstruction using semitendinosus tendon and iliotibial tract. J Bone Joint Surg Am 68:160–177

    Article  CAS  PubMed  Google Scholar 

  34. Zens M, Niemeyer P, Ruhhammer J et al (2015) Length changes of the anterolateral ligament during passive knee motion: a human cadaveric study. Am J Sports Med 43:2545–2552

    Article  PubMed  Google Scholar 

Download references

Authors’ contributions

MK carried out the experiment, analysed the data and drafted the manuscript. HK designed the initial plan, conducted the study and completed the final manuscript. KN carried out the experiment. IS conducted the study. TM carried out the experiment and conducted the study. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideyuki Koga.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katakura, M., Koga, H., Nakamura, K. et al. Effects of different femoral tunnel positions on tension changes in anterolateral ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 25, 1272–1278 (2017). https://doi.org/10.1007/s00167-016-4178-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-016-4178-y

Keywords

Navigation