Skip to main content

Advertisement

Log in

The biomechanical effects of graft rotation on ACL reconstruction tunnel mismatch

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Bone block protrusion out of the tibial tunnel due to a relatively long graft is a common complication in anterior cruciate ligament surgical reconstruction with a patellar tendon. One possible solution is to shorten the patellar tendon graft already fixed in the femur by applying external rotation. This study aimed to evaluate the degree of shortening and biomechanical changes in porcine patellar grafts subjected to relatively higher degrees of rotation. Data obtained with rotations of 0°, 540°, 720°, and 900° were compared.

Methods

Forty patellar porcine ligaments were subjected to biomechanical tests of degree of shortening, modulus of elasticity and maximum tension in the tendon before rupture. Tests were conducted using a universal mechanical testing machine and a computerized system for acquiring strength and deformation data.

Results

Progressive shortening of the patellar ligament occurred with rotations of 0°, 540° and 720°. However, the degree of shortening showed no statistically significant difference as rotation increased from 720° to 900°. Decreased modulus of elasticity was observed compared with the graft rotation at 0° in all groups tested, but no statistically significant differences were observed among 540°, 720° and 900°. The maximum tension of the patellar tendon showed no change before rupture, regardless of the degree of rotation.

Conclusions

Rotating the patellar tendon is an efficient method for shortening a relatively long graft; however, more biomechanical studies are necessary to recommend this technique in clinical practice owing to the resulting decrease in graft stiffness that could compromise knee stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aerssens J, Boonen S, Lowet G, Dequeker J (1998) Interspecies differences in bone composition, density, and quality: potential implications for in vivo bone research. Endocrinology 139:663–670

    Article  CAS  PubMed  Google Scholar 

  2. Augé WK, Yifan K (1999) A technique for resolution of graft-tunnel length mismatch in central third bone-patellar tendon-bone anterior cruciate ligament reconstruction. Arthroscopy 15:877–881

    Article  PubMed  Google Scholar 

  3. Barber FA (2000) Flipped patellar tendon autograft anterior cruciate ligament reconstruction. Arthroscopy 16:483–490

    Article  CAS  PubMed  Google Scholar 

  4. Berkson E, Lee GH, Kumar A, Verma N, Bach BR, Hallab N (2006) The effect of cyclic loading on rotated bone-tendon-bone anterior cruciate ligament graft constructs. Am J Sports Med 34:1442–1449

    Article  PubMed  Google Scholar 

  5. Boddu CK, Arif SK, Hussain MM, Sankaranarayanan S, Hameed S, Sujir PR (2015) Prevention of graft-tunnel mismatch during anatomical anterior cruciate ligament reconstruction using a bone-patellar tendon-bone graft. Bone Joint J 97-B:324–328

    Article  CAS  PubMed  Google Scholar 

  6. Brown JA, Brophy RH, Franco J, Marquand A, Solomon TC, Watanabe D, Mandelbaum BR (2007) Avoiding allograft length mismatch during anterior cruciate ligament reconstruction: patient height as an indicator of appropriate graft length. Am J Sports Med 35:986–989

    Article  PubMed  Google Scholar 

  7. Butler DL (1987) Evaluation of fixation methods in cruciate ligament replacement. Instr Course Lect 36:173–178

    CAS  PubMed  Google Scholar 

  8. Camarda L, Pitarresi G, Moscadini S, Marannano G, Sanfilippo A, D’Arienzo M (2014) Effect of suturing the femoral portion of a four-strand graft during an ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 22:1040–1046

    Article  PubMed  Google Scholar 

  9. Cooper DE (1998) Biomechanical properties of the central third patellar tendon graft: effect of rotation. Knee Surg Sports Traumatol Arthrosc 6:16–19

    Article  CAS  Google Scholar 

  10. Cunningham R, West JR, Greis PE, Burks RT (2002) A survey of the tension applied to a doubled hamstring tendon graft for reconstruction of the anterior cruciate ligament. Arthroscopy 18:983–988

    Article  PubMed  Google Scholar 

  11. Denti M, Bigoni M, Randelli P, Monteleone M, Cevenini A, Ghezzi A, Schiavone Panni A, Trevisan C (1998) Graft-tunnel mismatch in endoscopic anterior cruciate ligament reconstruction. Intraoperative and cadaver measurement of the intra-articular graft length and the length of the patellar tendon. Knee Surg Sports Traumatol Arthrosc 6:165–168

    Article  CAS  PubMed  Google Scholar 

  12. Diduch DR, Mann J, Geary SP, Scott WN, Huie G (1998) The effect of pretwisting the ACL autograft on knee laxity. Am J Knee Surg 11:15–19

    CAS  PubMed  Google Scholar 

  13. Figueroa D, Calvo R, Vaisman A, Meleán P, Figueroa F (2010) Effect of tendon tensioning: an in vitro study in porcine extensor tendons. Knee 17:245–248

    Article  PubMed  Google Scholar 

  14. Fowler BL, DiStefano VJ (1998) Tibial tunnel bone grafting: a new technique for dealing with graft-tunnel mismatch in endoscopic anterior cruciate ligament reconstruction. Arthroscopy 14:224–228

    Article  CAS  PubMed  Google Scholar 

  15. Goldstein JL, Verma N, McNickle AG, Zelazny A, Ghodadra N, Bach BR (2010) Avoiding mismatch in allograft anterior cruciate ligament reconstruction: correlation between patient height and patellar tendon length. Arthroscopy 26:643–650

    Article  PubMed  Google Scholar 

  16. Grawe B, Smerina A, Allen A (2014) Avoiding graft-tunnel length mismatch in anterior cruciate ligament reconstruction: the single-bone plug technique. Arthrosc Tech 3:e417–e420

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kato Y, Maeyama A, Lertwanich P, Wang JH, Ingham SJM, Kramer S, Martins CQA, Smolinski P, Fu FH (2012) Biomechanical comparison of different graft positions for single-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 21:816–823

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kennedy JC, Weinberg HW, Wilson AS (1974) The anatomy and function of the anterior cruciate ligament. As determined by clinical and morphological studies. J Bone Joint Surg Am 56:223–235

    Article  CAS  PubMed  Google Scholar 

  19. Kirwan GW, Bourke MG, Chipchase L, Dalton PA, Russell TG (2013) Initial graft tension and the effect on postoperative patient functional outcomes in anterior cruciate ligament reconstruction. Arthroscopy 29:934–941

    Article  PubMed  Google Scholar 

  20. Kousa PP, Järvinen TLT, Kannus PP, Järvinen MM (2001) Initial fixation strength of bioabsorbable and titanium interference screws in anterior cruciate ligament reconstruction. Biomechanical evaluation by single cycle and cyclic loading. Am J Sports Med 29:420–425

    CAS  PubMed  Google Scholar 

  21. Kurosaka MM, Yoshiya SS, Andrish JTJ (1987) A biomechanical comparison of different surgical techniques of graft fixation in anterior cruciate ligament reconstruction. Am J Sports Med 15:225–229

    Article  CAS  PubMed  Google Scholar 

  22. Kyung HS, Ihn JC, Kim DH (2001) Biomechanical properties after pre-twist of canine patellar tendon. Int Orthop 25:100–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Morrison JB (1970) The mechanics of the knee joint in relation to normal walking. J Biomech 3:51–61

    Article  CAS  PubMed  Google Scholar 

  24. Morrison JB (1969) Function of the knee joint in various activities. Biomed Eng 4:573–580

    CAS  PubMed  Google Scholar 

  25. Munns SWS, Jayaraman GG, Luallin SRS (1994) Effects of pretwist on biomechanical properties of canine patellar tendon. Arthroscopy 10:404–411

    Article  CAS  PubMed  Google Scholar 

  26. Nagarkatti DG, McKeon BP, Donahue BS, Fulkerson JP (2001) Mechanical evaluation of a soft tissue interference screw in free tendon anterior cruciate ligament graft fixation. Am J Sports Med 29:67–71

    CAS  PubMed  Google Scholar 

  27. Norwood LA, Cross MJ (1979) Anterior cruciate ligament: functional anatomy of its bundles in rotatory instabilities. Am J Sports Med 7:23–26

    Article  CAS  PubMed  Google Scholar 

  28. Novak PJ, Wexler GM, Williams JS, Bach BR, Bush-Joseph CA (1996) Comparison of screw post fixation and free bone block interference fixation for anterior cruciate ligament soft tissue grafts: biomechanical considerations. Arthroscopy 12:470–473

    Article  CAS  PubMed  Google Scholar 

  29. Samuelson TS, Drez D, Maletis GB (1996) Anterior cruciate ligament graft rotation. Reproduction of normal graft rotation. Am J Sports Med 24:67–71

    Article  CAS  PubMed  Google Scholar 

  30. Schoderbek RJ, Treme GP, Miller MD (2007) Bone-patella tendon-bone autograft anterior cruciate ligament reconstruction. Clin Sports Med 26:525–547

    Article  PubMed  Google Scholar 

  31. Shaffer BB, Gow WW, Tibone JEJ (1993) Graft-tunnel mismatch in endoscopic anterior cruciate ligament reconstruction: a new technique of intraarticular measurement and modified graft harvesting. Arthroscopy 9:633–646

    Article  CAS  PubMed  Google Scholar 

  32. Spindler KP, Bergfeld JA, Andrish JT (1993) Intraoperative complications of ACL surgery: avoidance and management. Orthopedics 16:425–430

    CAS  PubMed  Google Scholar 

  33. Spindler KP, Kuhn JE, Freedman KB, Matthews CE, Dittus RS, Harrell FE (2004) Anterior cruciate ligament reconstruction autograft choice: bone-tendon-bone versus hamstring: does it really matter? A systematic review. Am J Sports Med 32:1986–1995

    Article  PubMed  Google Scholar 

  34. Suzuki T, Shino K, Otsubo H, Suzuki D, Mae T, Fujimiya M, Yamashita T, Fujie H (2014) Biomechanical comparison between the rectangular-tunnel and the round-tunnel anterior cruciate ligament reconstruction procedures with a bone-patellar tendon-bone graft. Arthroscopy 30:1294–1302

    Article  PubMed  Google Scholar 

  35. Taylor DE, Dervin GF, Keene GC (1996) Femoral bone plug recession in endoscopic anterior cruciate ligament reconstruction. Arthroscopy 12:513–515

    Article  CAS  PubMed  Google Scholar 

  36. Tomita F, Yasuda K, Mikami S, Sakai T, Yamazaki S, Tohyama H (2001) Comparisons of intraosseous graft healing between the doubled flexor tendon graft and the bone-patellar tendon-bone graft in anterior cruciate ligament reconstruction. Arthroscopy 17:461–476

    Article  CAS  PubMed  Google Scholar 

  37. Verma N, Noerdlinger MA, Hallab N, Bush-Joseph CA, Bach BR (2003) Effects of graft rotation on initial biomechanical failure characteristics of bone-patellar tendon-bone constructs. Am J Sports Med 31:708–713

    PubMed  Google Scholar 

  38. Verma NN, Dennis MG, Carreira DS, Bojchuk J, Hayden JK, Bach BR (2005) Preliminary clinical results of two techniques for addressing graft tunnel mismatch in endoscopic anterior cruciate ligament reconstruction. J Knee Surg 18:183–191

    PubMed  Google Scholar 

  39. Wirth CJ, Kohn D (1990) Reconstruction of the anterior cruciate ligament: a new positioning and fixation technique. Am J Sports Med 18:154–159

    Article  CAS  PubMed  Google Scholar 

  40. Zaffagnini S, Marcheggiani Muccioli GM, Signorelli C, Lopomo N, Grassi A, Bonanzinga T, Nitri M, Marcacci M (2014) Anatomic and nonanatomic double-bundle anterior cruciate ligament reconstruction: an in vivo kinematic analysis. Am J Sports Med 42:708–715

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Guoan Li and Mauro Emilio Conforto Gracitelli for reviewing this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danilo Ricardo Okiishi de Oliveira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, D.R.O., Garcia, E.T., Fuso, F.A.F. et al. The biomechanical effects of graft rotation on ACL reconstruction tunnel mismatch. Knee Surg Sports Traumatol Arthrosc 25, 1255–1263 (2017). https://doi.org/10.1007/s00167-016-4070-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-016-4070-9

Keywords

Navigation