Skip to main content
Log in

Influence of mediolateral tibial baseplate position in TKA on knee kinematics and retropatellar pressure

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Anterior knee pain is a major reason for unsatisfied patients after total knee arthroplasty (TKA). Since malposition and increased retropatellar peak pressure are supposed to contribute to pain, we conducted this in vitro study to analyse the influence of mediolateral tibial component position on tibiofemoral and patella kinematics as well as retropatellar pressure.

Methods

Eight fresh frozen cadaver specimens were tested after a fixed-bearing TKA. To evaluate the influence of mediolateral tibial component position, special inlays with 3 mm of medialization and lateralization were constructed. For the analysis, a weight-bearing knee rig under a loaded squat from 20° to 120° of flexion was used. Tibiofemoral and patella kinematics were measured with an ultrasonic-based three-dimensional motion analysis system. Additionally, retropatellar pressure distribution was registered with a pressure-sensitive film.

Results

Alteration of mediolateral tibial component position by 3 mm did not reveal a significant influence on retropatellar peak pressure (7.5 ± 2.5 vs. 7.2 ± 2.6 MPa). Regarding tibiofemoral kinematics, 3-mm medialization of the tibial baseplate significantly increased lateral femoral rollback and femorotibial external rotation. Medialization of 3 mm also significantly increased the relative medial patella shift and decreased lateral patella tilt.

Discussion

Medialization of the tibial baseplate came along with more lateral rollback and external femorotibial rotation. For the positioning of the tibial baseplate, rotational alignment seems to be more important than mediolateral orientation. Since retropatellar peak pressure remained rather unchanged, the tibial baseplate should be placed by the surgeon looking for a maximal tibial coverage without overhang.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Amis AA (2007) Current concepts on anatomy and biomechanics of patellar stability. Sports Med Arthrosc 15(2):48–56

    Article  PubMed  Google Scholar 

  2. Anderson JG, Wixson RL, Tsai D, Stulberg SD, Chang RW (1996) Functional outcome and patient satisfaction in total knee patients over the age of 75. J Arthroplasty 11(7):831–840

    Article  CAS  PubMed  Google Scholar 

  3. Bonnin MP, Saffarini M, Shepherd D, Bossard N, Dantony E (2015) Oversizing the tibial component in TKAs: incidence, consequences and risk factors. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-015-3512-0

    PubMed  Google Scholar 

  4. Bonnin MP, Schmidt A, Basiglini L, Bossard N, Dantony E (2013) Mediolateral oversizing influences pain, function, and flexion after TKA. Knee Surg Sports Traumatol Arthrosc 21(10):2314–2324

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bourne RB, Chesworth BM, Davis AM, Mahomed NN, Charron KD (2010) Patient satisfaction after total knee arthroplasty: Who is satisfied and who is not? Clin Orthop Relat Res 468(1):57–63

    Article  PubMed  Google Scholar 

  6. Boyd AD Jr, Ewald FC, Thomas WH, Poss R, Sledge CB (1993) Long-term complications after total knee arthroplasty with or without resurfacing of the patella. J Bone Joint Surg Am 75(5):674–681

    Article  PubMed  Google Scholar 

  7. Bull AM, Katchburian MV, Shih YF, Amis AA (2002) Standardisation of the description of patellofemoral motion and comparison between different techniques. Knee Surg Sports Traumatol Arthrosc 10(3):184–193

    Article  CAS  PubMed  Google Scholar 

  8. Dennis DA, Komistek RD, Mahfouz MR, Walker SA, Tucker A (2004) A multicenter analysis of axial femorotibial rotation after total knee arthroplasty. Clin Orthop Relat Res 428:180–189

    Article  Google Scholar 

  9. Dunbar MJ, Robertsson O, Ryd L, Lidgren L (2001) Appropriate questionnaires for knee arthroplasty. Results of a survey of 3600 patients from The Swedish Knee Arthroplasty Registry. J Bone Joint Surg Br 83(3):339–344

    Article  CAS  PubMed  Google Scholar 

  10. Elias JJ, Carrino JA, Saranathan A, Guseila LM, Tanaka MJ, Cosgarea AJ (2014) Variations in kinematics and function following patellar stabilization including tibial tuberosity realignment. Knee Surg Sports Traumatol Arthrosc 22(10):2350–2356

    Article  PubMed  Google Scholar 

  11. Freeman MA, Pinskerova V (2005) The movement of the normal tibio-femoral joint. J Biomech 38(2):197–208

    Article  CAS  PubMed  Google Scholar 

  12. Fuchs S, Skwara A, Tibesku CO, Rosenbaum D (2005) Retropatellar contact characteristics before and after total knee arthroplasty. Knee 12(1):9–12

    Article  PubMed  Google Scholar 

  13. Hartel MJ, Loosli Y, Delfosse D, Diel P, Thali M, Ross S, Kohl S, Eggli S (2014) The influence of tibial morphology on the design of an anatomical tibial baseplate for TKA. Knee 21(2):415–419

    Article  PubMed  Google Scholar 

  14. Howell SM, Hodapp EE, Vernace JV, Hull ML, Meade TD (2013) Are undesirable contact kinematics minimized after kinematically aligned total knee arthroplasty? An intersurgeon analysis of consecutive patients. Knee Surg Sports Traumatol Arthrosc 21(10):2281–2287

    Article  PubMed  Google Scholar 

  15. Innocenti B, Truyens E, Labey L, Wong P, Victor J, Bellemans J (2009) Can medio-lateral baseplate position and load sharing induce asymptomatic local bone resorption of the proximal tibia? A finite element study. J Orthop Surg Res 4:26

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ishida K, Matsumoto T, Tsumura N, Iwakura T, Kubo S, Iguchi T, Akisue T, Nishida K, Kurosaka M, Kuroda R (2014) No difference between double-high insert and medial-pivot insert in TKA. Knee Surg Sports Traumatol Arthrosc 22(3):576–580

    Article  PubMed  Google Scholar 

  17. Karrholm J, Jonsson H, Nilsson KG, Soderqvist I (1994) Kinematics of successful knee prostheses during weight-bearing: three-dimensional movements and positions of screw axes in the Tricon-M and Miller-Galante designs. Knee Surg Sports Traumatol Arthrosc 2(1):50–59

    Article  CAS  PubMed  Google Scholar 

  18. Kim YH, Yoon SH, Kim JS (2009) Early outcome of TKA with a medial pivot fixed-bearing prosthesis is worse than with a PFC mobile-bearing prosthesis. Clin Orthop Relat Res 467(2):493–503

    Article  PubMed  Google Scholar 

  19. Kulkarni SK, Freeman MA, Poal-Manresa JC, Asencio JI, Rodriguez JJ (2000) The patellofemoral joint in total knee arthroplasty: Is the design of the trochlea the critical factor? J Arthroplasty 15(4):424–429

    Article  CAS  PubMed  Google Scholar 

  20. Kuriyama S, Ishikawa M, Furu M, Ito H, Matsuda S (2014) Malrotated tibial component increases medial collateral ligament tension in total knee arthroplasty. J Orthop Res 32(12):1658–1666

    Article  PubMed  Google Scholar 

  21. Lemaire P, Pioletti DP, Meyer FM, Meuli R, Dorfl J, Leyvraz PF (1997) Tibial component positioning in total knee arthroplasty: bone coverage and extensor apparatus alignment. Knee Surg Sports Traumatol Arthrosc 5(4):251–257

    Article  CAS  PubMed  Google Scholar 

  22. Lutzner J, Kirschner S, Gunther KP, Harman MK (2012) Patients with no functional improvement after total knee arthroplasty show different kinematics. Int Orthop 36(9):1841–1847

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lutzner J, Krummenauer F, Gunther KP, Kirschner S (2010) Rotational alignment of the tibial component in total knee arthroplasty is better at the medial third of tibial tuberosity than at the medial border. BMC Musculoskelet Disord 11:57

    Article  PubMed  PubMed Central  Google Scholar 

  24. Martin S, Saurez A, Ismaily S, Ashfaq K, Noble P, Incavo SJ (2014) Maximizing tibial coverage is detrimental to proper rotational alignment. Clin Orthop Relat Res 472(1):121–125

    Article  PubMed  Google Scholar 

  25. Matsuzaki T, Matsumoto T, Kubo S, Muratsu H, Matsushita T, Kawakami Y, Ishida K, Oka S, Kuroda R, Kurosaka M (2014) Tibial internal rotation is affected by lateral laxity in cruciate-retaining total knee arthroplasty: an intraoperative kinematic study using a navigation system and offset-type tensor. Knee Surg Sports Traumatol Arthrosc 22(3):615–620

    Article  PubMed  Google Scholar 

  26. Merican AM, Ghosh KM, Iranpour F, Deehan DJ, Amis AA (2011) The effect of femoral component rotation on the kinematics of the tibiofemoral and patellofemoral joints after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 19(9):1479–1487

    Article  CAS  PubMed  Google Scholar 

  27. Miyazaki Y, Nakamura T, Kogame K, Saito M, Yamamoto K, Suguro T (2011) Analysis of the kinematics of total knee prostheses with a medial pivot design. J Arthroplasty 26(7):1038–1044

    Article  PubMed  Google Scholar 

  28. Moran CG, Horton TC (2000) Total knee replacement: the joint of the decade. A successful operation, for which there’s a large unmet need. BMJ 320(7238):820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nagamine R, Whiteside LA, White SE, McCarthy DS (1994) Patellar tracking after total knee arthroplasty. The effect of tibial tray malrotation and articular surface configuration. Clin Orthop Relat Res 304:262–271

    Google Scholar 

  30. Noble PC, Conditt MA, Cook KF, Mathis KB (2006) The John Insall Award: patient expectations affect satisfaction with total knee arthroplasty. Clin Orthop Relat Res 452:35–43

    Article  PubMed  Google Scholar 

  31. Sadoghi P, Liebensteiner M, Agreiter M, Leithner A, Bohler N, Labek G (2013) Revision surgery after total joint arthroplasty: a complication-based analysis using worldwide arthroplasty registers. J Arthroplasty 28(8):1329–1332

    Article  PubMed  Google Scholar 

  32. Steinbrück A, Schröder C, Woiczinski M, Fottner A, Müller PE, Jansson V (2013) Patellofemoral contact patterns before and after total knee arthroplasty: an in vitro measurement. Biomed Eng Online 12:58

    Article  PubMed  PubMed Central  Google Scholar 

  33. Steinbrück A, Schröder C, Woiczinski M, Fottner A, Müller PE, Jansson V (2014) The effect of trochlea tilting on patellofemoral contact patterns after total knee arthroplasty: an in vitro study. Arch Orthop Trauma Surg 134(6):867–872

    Article  PubMed  Google Scholar 

  34. Steinbrück A, Schröder C, Woiczinski M, Müller T, Müller PE, Jansson V, Fottner A (2015) Influence of tibial rotation in total knee arthroplasty on knee kinematics and retropatellar pressure: an in vitro study. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-015-3503-1

    Google Scholar 

  35. Steinbrück A, Woiczinski M, Weber P, Müller PE, Jansson V, Schröder C (2014) Posterior cruciate ligament balancing in total knee arthroplasty: a numerical study with a dynamic force controlled knee model. Biomed Eng Online 13:91

    Article  PubMed  PubMed Central  Google Scholar 

  36. Stephen JM, Lumpaopong P, Dodds AL, Williams A, Amis AA (2015) The effect of tibial tuberosity medialization and lateralization on patellofemoral joint kinematics, contact mechanics, and stability. Am J Sports Med 43(1):186–194

    Article  PubMed  Google Scholar 

  37. van Kempen RW, Schimmel JJ, van Hellemondt GG, Vandenneucker H, Wymenga AB (2013) Reason for revision TKA predicts clinical outcome: prospective evaluation of 150 consecutive patients with 2-years followup. Clin Orthop Relat Res 471(7):2296–2302

    Article  PubMed  PubMed Central  Google Scholar 

  38. Vince KG (2003) Why knees fail. J Arthroplasty 18(3 Suppl 1):39–44

    Article  PubMed  Google Scholar 

  39. Wagenaar FC, Koeter S, Anderson PG, Wymenga AB (2007) Conventional radiography cannot replace CT scanning in detecting tibial tubercle lateralisation. Knee 14(1):51–54

    Article  PubMed  Google Scholar 

  40. Wylde V, Learmonth I, Potter A, Bettinson K, Lingard E (2008) Patient-reported outcomes after fixed- versus mobile-bearing total knee replacement: a multi-centre randomised controlled trial using the Kinemax total knee replacement. J Bone Joint Surg Br 90(9):1172–1179

    Article  CAS  PubMed  Google Scholar 

  41. Zaffagnini S, Bignozzi S, Saffarini M, Colle F, Sharma B, Kinov PS, Marcacci M, Dejour D (2014) Comparison of stability and kinematics of the natural knee versus a PS TKA with a ‘third condyle’. Knee Surg Sports Traumatol Arthrosc 22(8):1778–1785

    Article  PubMed  Google Scholar 

  42. Zihlmann MS, Stacoff A, Romero J, Quervain IK, Stussi E (2005) Biomechanical background and clinical observations of rotational malalignment in TKA: literature review and consequences. Clin Biomech 20(7):661–668

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnd Steinbrück.

Additional information

Arnd Steinbrück and Andreas Fottner contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steinbrück, A., Fottner, A., Schröder, C. et al. Influence of mediolateral tibial baseplate position in TKA on knee kinematics and retropatellar pressure. Knee Surg Sports Traumatol Arthrosc 25, 2602–2608 (2017). https://doi.org/10.1007/s00167-015-3843-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-015-3843-x

Keywords

Navigation