Advertisement

Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 25, Issue 8, pp 2602–2608 | Cite as

Influence of mediolateral tibial baseplate position in TKA on knee kinematics and retropatellar pressure

  • Arnd SteinbrückEmail author
  • Andreas Fottner
  • Christian Schröder
  • Matthias Woiczinski
  • Markus Schmitt-Sody
  • Tatjana Müller
  • Peter E. Müller
  • Volkmar Jansson
Knee

Abstract

Purpose

Anterior knee pain is a major reason for unsatisfied patients after total knee arthroplasty (TKA). Since malposition and increased retropatellar peak pressure are supposed to contribute to pain, we conducted this in vitro study to analyse the influence of mediolateral tibial component position on tibiofemoral and patella kinematics as well as retropatellar pressure.

Methods

Eight fresh frozen cadaver specimens were tested after a fixed-bearing TKA. To evaluate the influence of mediolateral tibial component position, special inlays with 3 mm of medialization and lateralization were constructed. For the analysis, a weight-bearing knee rig under a loaded squat from 20° to 120° of flexion was used. Tibiofemoral and patella kinematics were measured with an ultrasonic-based three-dimensional motion analysis system. Additionally, retropatellar pressure distribution was registered with a pressure-sensitive film.

Results

Alteration of mediolateral tibial component position by 3 mm did not reveal a significant influence on retropatellar peak pressure (7.5 ± 2.5 vs. 7.2 ± 2.6 MPa). Regarding tibiofemoral kinematics, 3-mm medialization of the tibial baseplate significantly increased lateral femoral rollback and femorotibial external rotation. Medialization of 3 mm also significantly increased the relative medial patella shift and decreased lateral patella tilt.

Discussion

Medialization of the tibial baseplate came along with more lateral rollback and external femorotibial rotation. For the positioning of the tibial baseplate, rotational alignment seems to be more important than mediolateral orientation. Since retropatellar peak pressure remained rather unchanged, the tibial baseplate should be placed by the surgeon looking for a maximal tibial coverage without overhang.

Keywords

Total knee arthroplasty Mediolateral malalignment Retropatellar pressure Tibial component Knee kinematics 

References

  1. 1.
    Amis AA (2007) Current concepts on anatomy and biomechanics of patellar stability. Sports Med Arthrosc 15(2):48–56CrossRefPubMedGoogle Scholar
  2. 2.
    Anderson JG, Wixson RL, Tsai D, Stulberg SD, Chang RW (1996) Functional outcome and patient satisfaction in total knee patients over the age of 75. J Arthroplasty 11(7):831–840CrossRefPubMedGoogle Scholar
  3. 3.
    Bonnin MP, Saffarini M, Shepherd D, Bossard N, Dantony E (2015) Oversizing the tibial component in TKAs: incidence, consequences and risk factors. Knee Surg Sports Traumatol Arthrosc. doi: 10.1007/s00167-015-3512-0 PubMedGoogle Scholar
  4. 4.
    Bonnin MP, Schmidt A, Basiglini L, Bossard N, Dantony E (2013) Mediolateral oversizing influences pain, function, and flexion after TKA. Knee Surg Sports Traumatol Arthrosc 21(10):2314–2324CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bourne RB, Chesworth BM, Davis AM, Mahomed NN, Charron KD (2010) Patient satisfaction after total knee arthroplasty: Who is satisfied and who is not? Clin Orthop Relat Res 468(1):57–63CrossRefPubMedGoogle Scholar
  6. 6.
    Boyd AD Jr, Ewald FC, Thomas WH, Poss R, Sledge CB (1993) Long-term complications after total knee arthroplasty with or without resurfacing of the patella. J Bone Joint Surg Am 75(5):674–681CrossRefPubMedGoogle Scholar
  7. 7.
    Bull AM, Katchburian MV, Shih YF, Amis AA (2002) Standardisation of the description of patellofemoral motion and comparison between different techniques. Knee Surg Sports Traumatol Arthrosc 10(3):184–193CrossRefPubMedGoogle Scholar
  8. 8.
    Dennis DA, Komistek RD, Mahfouz MR, Walker SA, Tucker A (2004) A multicenter analysis of axial femorotibial rotation after total knee arthroplasty. Clin Orthop Relat Res 428:180–189CrossRefGoogle Scholar
  9. 9.
    Dunbar MJ, Robertsson O, Ryd L, Lidgren L (2001) Appropriate questionnaires for knee arthroplasty. Results of a survey of 3600 patients from The Swedish Knee Arthroplasty Registry. J Bone Joint Surg Br 83(3):339–344CrossRefPubMedGoogle Scholar
  10. 10.
    Elias JJ, Carrino JA, Saranathan A, Guseila LM, Tanaka MJ, Cosgarea AJ (2014) Variations in kinematics and function following patellar stabilization including tibial tuberosity realignment. Knee Surg Sports Traumatol Arthrosc 22(10):2350–2356CrossRefPubMedGoogle Scholar
  11. 11.
    Freeman MA, Pinskerova V (2005) The movement of the normal tibio-femoral joint. J Biomech 38(2):197–208CrossRefPubMedGoogle Scholar
  12. 12.
    Fuchs S, Skwara A, Tibesku CO, Rosenbaum D (2005) Retropatellar contact characteristics before and after total knee arthroplasty. Knee 12(1):9–12CrossRefPubMedGoogle Scholar
  13. 13.
    Hartel MJ, Loosli Y, Delfosse D, Diel P, Thali M, Ross S, Kohl S, Eggli S (2014) The influence of tibial morphology on the design of an anatomical tibial baseplate for TKA. Knee 21(2):415–419CrossRefPubMedGoogle Scholar
  14. 14.
    Howell SM, Hodapp EE, Vernace JV, Hull ML, Meade TD (2013) Are undesirable contact kinematics minimized after kinematically aligned total knee arthroplasty? An intersurgeon analysis of consecutive patients. Knee Surg Sports Traumatol Arthrosc 21(10):2281–2287CrossRefPubMedGoogle Scholar
  15. 15.
    Innocenti B, Truyens E, Labey L, Wong P, Victor J, Bellemans J (2009) Can medio-lateral baseplate position and load sharing induce asymptomatic local bone resorption of the proximal tibia? A finite element study. J Orthop Surg Res 4:26CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ishida K, Matsumoto T, Tsumura N, Iwakura T, Kubo S, Iguchi T, Akisue T, Nishida K, Kurosaka M, Kuroda R (2014) No difference between double-high insert and medial-pivot insert in TKA. Knee Surg Sports Traumatol Arthrosc 22(3):576–580CrossRefPubMedGoogle Scholar
  17. 17.
    Karrholm J, Jonsson H, Nilsson KG, Soderqvist I (1994) Kinematics of successful knee prostheses during weight-bearing: three-dimensional movements and positions of screw axes in the Tricon-M and Miller-Galante designs. Knee Surg Sports Traumatol Arthrosc 2(1):50–59CrossRefPubMedGoogle Scholar
  18. 18.
    Kim YH, Yoon SH, Kim JS (2009) Early outcome of TKA with a medial pivot fixed-bearing prosthesis is worse than with a PFC mobile-bearing prosthesis. Clin Orthop Relat Res 467(2):493–503CrossRefPubMedGoogle Scholar
  19. 19.
    Kulkarni SK, Freeman MA, Poal-Manresa JC, Asencio JI, Rodriguez JJ (2000) The patellofemoral joint in total knee arthroplasty: Is the design of the trochlea the critical factor? J Arthroplasty 15(4):424–429CrossRefPubMedGoogle Scholar
  20. 20.
    Kuriyama S, Ishikawa M, Furu M, Ito H, Matsuda S (2014) Malrotated tibial component increases medial collateral ligament tension in total knee arthroplasty. J Orthop Res 32(12):1658–1666CrossRefPubMedGoogle Scholar
  21. 21.
    Lemaire P, Pioletti DP, Meyer FM, Meuli R, Dorfl J, Leyvraz PF (1997) Tibial component positioning in total knee arthroplasty: bone coverage and extensor apparatus alignment. Knee Surg Sports Traumatol Arthrosc 5(4):251–257CrossRefPubMedGoogle Scholar
  22. 22.
    Lutzner J, Kirschner S, Gunther KP, Harman MK (2012) Patients with no functional improvement after total knee arthroplasty show different kinematics. Int Orthop 36(9):1841–1847CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lutzner J, Krummenauer F, Gunther KP, Kirschner S (2010) Rotational alignment of the tibial component in total knee arthroplasty is better at the medial third of tibial tuberosity than at the medial border. BMC Musculoskelet Disord 11:57CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Martin S, Saurez A, Ismaily S, Ashfaq K, Noble P, Incavo SJ (2014) Maximizing tibial coverage is detrimental to proper rotational alignment. Clin Orthop Relat Res 472(1):121–125CrossRefPubMedGoogle Scholar
  25. 25.
    Matsuzaki T, Matsumoto T, Kubo S, Muratsu H, Matsushita T, Kawakami Y, Ishida K, Oka S, Kuroda R, Kurosaka M (2014) Tibial internal rotation is affected by lateral laxity in cruciate-retaining total knee arthroplasty: an intraoperative kinematic study using a navigation system and offset-type tensor. Knee Surg Sports Traumatol Arthrosc 22(3):615–620CrossRefPubMedGoogle Scholar
  26. 26.
    Merican AM, Ghosh KM, Iranpour F, Deehan DJ, Amis AA (2011) The effect of femoral component rotation on the kinematics of the tibiofemoral and patellofemoral joints after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 19(9):1479–1487CrossRefPubMedGoogle Scholar
  27. 27.
    Miyazaki Y, Nakamura T, Kogame K, Saito M, Yamamoto K, Suguro T (2011) Analysis of the kinematics of total knee prostheses with a medial pivot design. J Arthroplasty 26(7):1038–1044CrossRefPubMedGoogle Scholar
  28. 28.
    Moran CG, Horton TC (2000) Total knee replacement: the joint of the decade. A successful operation, for which there’s a large unmet need. BMJ 320(7238):820CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Nagamine R, Whiteside LA, White SE, McCarthy DS (1994) Patellar tracking after total knee arthroplasty. The effect of tibial tray malrotation and articular surface configuration. Clin Orthop Relat Res 304:262–271Google Scholar
  30. 30.
    Noble PC, Conditt MA, Cook KF, Mathis KB (2006) The John Insall Award: patient expectations affect satisfaction with total knee arthroplasty. Clin Orthop Relat Res 452:35–43CrossRefPubMedGoogle Scholar
  31. 31.
    Sadoghi P, Liebensteiner M, Agreiter M, Leithner A, Bohler N, Labek G (2013) Revision surgery after total joint arthroplasty: a complication-based analysis using worldwide arthroplasty registers. J Arthroplasty 28(8):1329–1332CrossRefPubMedGoogle Scholar
  32. 32.
    Steinbrück A, Schröder C, Woiczinski M, Fottner A, Müller PE, Jansson V (2013) Patellofemoral contact patterns before and after total knee arthroplasty: an in vitro measurement. Biomed Eng Online 12:58CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Steinbrück A, Schröder C, Woiczinski M, Fottner A, Müller PE, Jansson V (2014) The effect of trochlea tilting on patellofemoral contact patterns after total knee arthroplasty: an in vitro study. Arch Orthop Trauma Surg 134(6):867–872CrossRefPubMedGoogle Scholar
  34. 34.
    Steinbrück A, Schröder C, Woiczinski M, Müller T, Müller PE, Jansson V, Fottner A (2015) Influence of tibial rotation in total knee arthroplasty on knee kinematics and retropatellar pressure: an in vitro study. Knee Surg Sports Traumatol Arthrosc. doi: 10.1007/s00167-015-3503-1 Google Scholar
  35. 35.
    Steinbrück A, Woiczinski M, Weber P, Müller PE, Jansson V, Schröder C (2014) Posterior cruciate ligament balancing in total knee arthroplasty: a numerical study with a dynamic force controlled knee model. Biomed Eng Online 13:91CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Stephen JM, Lumpaopong P, Dodds AL, Williams A, Amis AA (2015) The effect of tibial tuberosity medialization and lateralization on patellofemoral joint kinematics, contact mechanics, and stability. Am J Sports Med 43(1):186–194CrossRefPubMedGoogle Scholar
  37. 37.
    van Kempen RW, Schimmel JJ, van Hellemondt GG, Vandenneucker H, Wymenga AB (2013) Reason for revision TKA predicts clinical outcome: prospective evaluation of 150 consecutive patients with 2-years followup. Clin Orthop Relat Res 471(7):2296–2302CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Vince KG (2003) Why knees fail. J Arthroplasty 18(3 Suppl 1):39–44CrossRefPubMedGoogle Scholar
  39. 39.
    Wagenaar FC, Koeter S, Anderson PG, Wymenga AB (2007) Conventional radiography cannot replace CT scanning in detecting tibial tubercle lateralisation. Knee 14(1):51–54CrossRefPubMedGoogle Scholar
  40. 40.
    Wylde V, Learmonth I, Potter A, Bettinson K, Lingard E (2008) Patient-reported outcomes after fixed- versus mobile-bearing total knee replacement: a multi-centre randomised controlled trial using the Kinemax total knee replacement. J Bone Joint Surg Br 90(9):1172–1179CrossRefPubMedGoogle Scholar
  41. 41.
    Zaffagnini S, Bignozzi S, Saffarini M, Colle F, Sharma B, Kinov PS, Marcacci M, Dejour D (2014) Comparison of stability and kinematics of the natural knee versus a PS TKA with a ‘third condyle’. Knee Surg Sports Traumatol Arthrosc 22(8):1778–1785CrossRefPubMedGoogle Scholar
  42. 42.
    Zihlmann MS, Stacoff A, Romero J, Quervain IK, Stussi E (2005) Biomechanical background and clinical observations of rotational malalignment in TKA: literature review and consequences. Clin Biomech 20(7):661–668CrossRefGoogle Scholar

Copyright information

© European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2015

Authors and Affiliations

  • Arnd Steinbrück
    • 1
    Email author
  • Andreas Fottner
    • 1
  • Christian Schröder
    • 1
  • Matthias Woiczinski
    • 1
  • Markus Schmitt-Sody
    • 1
  • Tatjana Müller
    • 1
  • Peter E. Müller
    • 1
  • Volkmar Jansson
    • 1
  1. 1.Department of Orthopedic Surgery, Physical Medicine and RehabilitationUniversity Hospital of Munich (LMU)MunichGermany

Personalised recommendations