Advertisement

Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 25, Issue 12, pp 3704–3710 | Cite as

Can we predict the size of frequently used autografts in ACL reconstruction?

  • Philip Zakko
  • Carola F. van Eck
  • Daniel Guenther
  • James J. Irrgang
  • Freddie H. FuEmail author
Knee

Abstract

Purpose

This study presents a method to measure the size of quadriceps, patellar tendon and hamstring autografts using preoperative magnetic resonance imaging (MRI).

Methods

Sixty-two subjects with a mean age of 25 ± 10 years who underwent ACL surgery between 2011 and 2014 were included. Patient anthropometric data were recorded for all subjects. During surgery, the respective autograft was harvested and measured using commercially available graft sizers. MRI measurements were performed by two raters, who were blinded to the intra-operative measurements.

Results

The inter- and intra-rater reliability was ≥0.8 for all MRI measurements. The intra-class correlation coefficient between the MRI measurement of the graft and the actual size of the harvested graft was 0.639. There were significant correlations between quadriceps tendon thickness and height (r = 0.3, p < 0.03), weight (r = 0.3, p < 0.01), BMI (r = 0.3, p < 0.04) and gender (r = −0.4, p < 0.002) and patellar tendon thickness and height (r = 0.4, p < 0.01), weight (r = 0.3, p < 0.01) and gender (r = −0.4, p < 0.012).

Conclusion

Preoperative MRI measurements of quadriceps, patellar tendon and hamstring graft size are highly reliable with moderate-to-good accuracy. Significant correlations between patient anthropometric data and the thicknesses of the quadriceps and patellar tendons were observed. Obtaining this information can be useful for preoperative planning and to help counsel patients on appropriate graft choices prior to surgery.

Level of evidence

III.

Keywords

ACL MRI Hamstring autograft Patellar tendon autograft Quadriceps tendon autograft Graft size measurement 

References

  1. 1.
    Andernord D, Björnsson H, Petzold M et al (2014) Surgical predictors of early revision surgery after anterior cruciate ligament reconstruction: results from the Swedish national knee ligament register on 13,102 patients. Am J Sports Med 42(7):1574–1582CrossRefPubMedGoogle Scholar
  2. 2.
    Araujo PH, Kfuri Junior M, Ohashi B, Hoshino Y, Zaffagnini S, Samuelsson K, Karlsson J, Fu F, Musahl V (2014) Individualized ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 22(9):1966–1975CrossRefPubMedGoogle Scholar
  3. 3.
    Bickel BA, Fowler TT, Mowbray JG, Adler B, Klingele K, Phillips G (2008) Preoperative magnetic resonance imaging cross-sectional area for the measurement of hamstring autograft diameter for reconstruction of the adolescent anterior cruciate ligament. Arthroscopy 24(12):1336–1341CrossRefPubMedGoogle Scholar
  4. 4.
    Boisvert CB, Aubin ME, DeAngelis N (2011) Relationship between anthropometric measurements and hamstring autograft diameter in anterior cruciate ligament reconstruction. Am J Orthop 40(6):293–295PubMedGoogle Scholar
  5. 5.
    Borchers JR, Pedroza A, Kaeding C (2009) Activity level and graft type as risk factors for anterior cruciate ligament graft failure: a case-control study. Am J Sports Med 37(12):2362–2367CrossRefPubMedGoogle Scholar
  6. 6.
    Bradley JP, Klimkiewicz JJ, Rytel MJ, Powell JW (2002) Anterior cruciate ligament injuries in the National Football League: epidemiology and current treatment trends among team physicians. Arthroscopy 18(5):502–509CrossRefPubMedGoogle Scholar
  7. 7.
    Chiang E-R, Ma H-L, Wang S-T, Hung S-C, Liu C-L, Chen T-H (2012) Hamstring graft sizes differ between Chinese and Caucasians. Knee Surg Sports Traumatol Arthrosc 20(5):916–921CrossRefPubMedGoogle Scholar
  8. 8.
    Conte EJ, Hyatt AE, Gatt CJ, Dhawan A (2014) Hamstring autograft size can be predicted and is a potential risk factor for anterior cruciate ligament reconstruction failure. Arthroscopy 30(7):882–890CrossRefPubMedGoogle Scholar
  9. 9.
    Corry IS, Webb JM, Clingeleffer AJ, Pinczewski LA (1999) Arthroscopic reconstruction of the anterior cruciate ligament. A comparison of patellar tendon autograft and four-strand hamstring tendon autograft. Am J Sports Med 27(4):444–454CrossRefPubMedGoogle Scholar
  10. 10.
    Han Y, Kurzencwyg D, Hart A, Powell T, Martineau PA (2012) Measuring the anterior cruciate ligament’s footprints by three-dimensional magnetic resonance imaging. Knee Surg Sports Traumatol Arthrosc 20(5):986–995CrossRefPubMedGoogle Scholar
  11. 11.
    Iriuchishima T, Ryu K, Aizawa S, Fu FH (2014) Proportional evaluation of anterior cruciate ligament footprint size and knee bony morphology. Knee Surg Sports Traumatol Arthrosc. doi: 10.1007/s00167-014-3139-6 Google Scholar
  12. 12.
    Iriuchishima T, Tajima G, Shirakura K et al (2011) In vitro and in vivo AM and PL tunnel positioning in anatomical double bundle anterior cruciate ligament reconstruction. Arch Orthop Trauma Surg 131(8):1085–1090CrossRefPubMedGoogle Scholar
  13. 13.
    Iriuchishima T, Yorifuji H, Aizawa S et al (2014) Evaluation of ACL mid-substance cross-sectional area for reconstructed autograft selection. Knee Surg Sports Traumatol Arthrosc 22(1):207–213CrossRefPubMedGoogle Scholar
  14. 14.
    Karlsson J, Irrgang JJ, van Eck CF, Samuelsson K, Mejia HA, Fu FH (2011) Anatomic single- and double-bundle anterior cruciate ligament reconstruction, part 2: clinical application of surgical technique. Am J Sports Med 39(9):2016–2026CrossRefPubMedGoogle Scholar
  15. 15.
    Kopf S, Musahl V, Tashman S, Szczodry M, Shen W, Fu FH (2009) A systematic review of the femoral origin and tibial insertion morphology of the ACL. Knee Surg Sports Traumatol Arthrosc 17(3):213–219CrossRefPubMedGoogle Scholar
  16. 16.
    Kopf S, Pombo MW, Szczodry M, Irrgang JJ, Fu FH (2011) Size variability of the human anterior cruciate ligament insertion sites. Am J Sports Med 39(1):108–113CrossRefPubMedGoogle Scholar
  17. 17.
    Kraeutler MJ, Bravman JT, McCarty EC (2013) Bone-patellar tendon-bone autograft versus allograft in outcomes of anterior cruciate ligament reconstruction: a meta-analysis of 5182 patients. Am J Sports Med 41(10):2439–2448CrossRefPubMedGoogle Scholar
  18. 18.
    Ma CB, Keifa E, Dunn W, Fu FH, Harner CD (2010) Can pre-operative measures predict quadruple hamstring graft diameter? Knee 17(1):81–83CrossRefPubMedGoogle Scholar
  19. 19.
    Magnussen RA, Lawrence JTR, West RL, Toth AP, Taylor DC, Garrett WE (2012) Graft size and patient age are predictors of early revision after anterior cruciate ligament reconstruction with hamstring autograft. Arthroscopy 28(4):526–531CrossRefPubMedGoogle Scholar
  20. 20.
    Mariscalco MW, Flanigan DC, Mitchell J et al (2013) The influence of hamstring autograft size on patient-reported outcomes and risk of revision after anterior cruciate ligament reconstruction: a Multicenter Orthopaedic Outcomes Network (MOON) Cohort Study. Arthroscopy 29(12):1948–1953CrossRefPubMedGoogle Scholar
  21. 21.
    Middleton KK, Muller B, Araujo PH et al (2014) Is the native ACL insertion site “completely restored” using an individualized approach to single-bundle ACL-R? Knee Surg Sports Traumatol Arthrosc. doi: 10.1007/s00167-014-3043-0 Google Scholar
  22. 22.
    Miyawaki M, Hensler D, Illingworth KD, Irrgang JJ, Fu FH (2014) Signal intensity on magnetic resonance imaging after allograft double-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 22(5):1002–1008CrossRefPubMedGoogle Scholar
  23. 23.
    Muller B, Hofbauer M, Wongcharoenwatana J, Fu FH (2013) Indications and contraindications for double-bundle ACL reconstruction. Int Orthop (SICOT) 37(2):239–246CrossRefGoogle Scholar
  24. 24.
    Niki Y, Hakozaki A, Iwamoto W et al (2012) Factors affecting anterior knee pain following anatomic double-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 20(8):1543–1549CrossRefPubMedGoogle Scholar
  25. 25.
    Park JH, Lee YS, Park JW, Wang JH, Kim JG (2010) A comparative study of screw and helical proximal femoral nails for the treatment of intertrochanteric fractures. Orthopedics 33(2):81–85CrossRefPubMedGoogle Scholar
  26. 26.
    Park SY, Oh H, Park S, Lee JH, Lee SH, Yoon KH (2013) Factors predicting hamstring tendon autograft diameters and resulting failure rates after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 21(5):1111–1118CrossRefPubMedGoogle Scholar
  27. 27.
    Prodromos CC, Han YS, Keller BL, Bolyard RJ (2005) Posterior mini-incision technique for hamstring anterior cruciate ligament reconstruction graft harvest. Arthroscopy 21(2):130–137CrossRefPubMedGoogle Scholar
  28. 28.
    Prodromos CC (2010) Posterior mini-incision hamstring harvest. Sports Med Arthrosc 18(1):12–14CrossRefPubMedGoogle Scholar
  29. 29.
    Rabuck SJ, Middleton KK, Maeda S et al (2012) Individualized anatomic anterior cruciate ligament reconstruction. Arthrosc Tech 1(1):e23–e29CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Rabuck SJ, Musahl V, Fu FH, West RV (2013) Anatomic anterior cruciate ligament reconstruction with quadriceps tendon autograft. Clin Sports Med 32(1):155–164CrossRefPubMedGoogle Scholar
  31. 31.
    Schreiber VM, van Eck CF, Fu FH (2010) Anatomic double-bundle ACL reconstruction. Sports Med Arthrosc 18(1):27–32CrossRefPubMedGoogle Scholar
  32. 32.
    Thomas S, Bhattacharya R, Saltikov JB, Kramer DJ (2013) Influence of anthropometric features on graft diameter in ACL reconstruction. Arch Orthop Trauma Surg 133(2):215–218CrossRefPubMedGoogle Scholar
  33. 33.
    Treme G, Diduch DR, Billante MJ, Miller MD, Hart JM (2008) Hamstring graft size prediction: a prospective clinical evaluation. Am J Sports Med 36(11):2204–2209CrossRefPubMedGoogle Scholar
  34. 34.
    Tuman JM, Diduch DR, Rubino LJ, Baumfeld JA, Nguyen HS, Hart JM (2007) Predictors for hamstring graft diameter in anterior cruciate ligament reconstruction. Am J Sports Med 35(11):1945–1949CrossRefPubMedGoogle Scholar
  35. 35.
    van Eck CF, Lesniak BP, Schreiber VM, Fu FH (2010) Anatomic single- and double-bundle anterior cruciate ligament reconstruction flowchart. Arthroscopy 26(2):258–268CrossRefPubMedGoogle Scholar
  36. 36.
    Vidal C, Guingand O, de Thomasson E et al (2012) Painful patellofemoral instability secondary to peroperative patellar fracture during bone-patellar tendon-bone autograft harvesting for anterior cruciate ligament reconstruction. Orthop Traumatol Surg Res 98(6):733–735CrossRefPubMedGoogle Scholar
  37. 37.
    Wernecke G, Harris IA, Houang MTW, Seeto BG, Chen DB, MacDessi SJ (2011) Using magnetic resonance imaging to predict adequate graft diameters for autologous hamstring double-bundle anterior cruciate ligament reconstruction. Arthroscopy 27(8):1055–1059CrossRefPubMedGoogle Scholar
  38. 38.
    Xie G, Huangfu X, Zhao J (2012) Prediction of the graft size of 4-stranded semitendinosus tendon and 4-stranded gracilis tendon for anterior cruciate ligament reconstruction: a Chinese Han patient study. Am J Sports Med 40(5):1161–1166CrossRefPubMedGoogle Scholar
  39. 39.
    Yasuda K, van Eck CF, Hoshino Y, Fu FH, Tashman S (2011) Anatomic single- and double-bundle anterior cruciate ligament reconstruction, part 1: basic science. Am J Sports Med 39(8):1789–1799CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2015

Authors and Affiliations

  • Philip Zakko
    • 1
  • Carola F. van Eck
    • 1
  • Daniel Guenther
    • 1
  • James J. Irrgang
    • 1
  • Freddie H. Fu
    • 1
    Email author
  1. 1.Department of Orthopaedic SurgeryUniversity of PittsburghPittsburghUSA

Personalised recommendations