Skip to main content
Log in

Tibiofemoral loss of contact area but no changes in peak pressures after meniscectomy in a Lapine in vivo quadriceps force transfer model

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The menisci are thought to modulate load transfer and to absorb shocks in the knee joint. No study has experimentally measured the meniscal functions in the intact, in vivo joint loaded by physiologically relevant muscular contractions.

Methods

Right knee joints of seven New Zealand white rabbits were loaded using isometric contractions of the quadriceps femoris muscles controlled by femoral nerve stimulation. Isometric knee extensor torques at the maximal and two submaximal force levels were performed at knee angles of 70°, 90°, 110°, and 130°. Patellofemoral and tibiofemoral contact areas and pressure distributions were measured using Fuji Presensor film inserted above and below the menisci and also with the menisci removed.

Results

Meniscectomy was associated with a decrease in tibiofemoral contact area ranging from 30 to 70 % and a corresponding increase in average contact pressures. Contact areas measured below the menisci were consistently larger than those measured on top of the menisci. Contact areas in the patellofemoral joint (PFJ), and peak pressures in tibiofemoral and PFJs, were not affected by meniscectomy. Contact areas and peak pressures in all joints depended crucially on knee joint angle and quadriceps force: The more flexed the knee joint was, the larger were the contact areas and the higher were the peak pressures.

Conclusions

In agreement with the literature, removal of the menisci was associated with significant decreases in tibiofemoral contact area and corresponding increases in average contact pressures, but surprisingly, peak pressures remained unaffected, indicating that the function of the menisci is to distribute loads across a greater contact area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aagard H, Verdonk R (1999) Function of the normal meniscus and consequences of meniscal resection. Scand J Med Sci Sports 9:134–140

    Article  Google Scholar 

  2. Allaire R, Muriuku M, Gilbertson L, Harner CD (2008) Biomechanical consequences of a tear of the posterior root of the medial meniscus. J Bone Joint Surg Am 90:1922–1931

    Article  PubMed  Google Scholar 

  3. Baratz ME, Fu FH, Mengato R (1986) Meniscal tears: the effect of meniscectomy and of repair on intraarticular contact areas and stress in the human knee. Am J Sports Med 14:270–275

    Article  CAS  PubMed  Google Scholar 

  4. Bedi A, Kelly NH, Baad M, Fox AJS, Brophy RH, Warren RF, Maher SA (2010) Dynamic contact mechanics of the medial meniscus as a function of radial tear, repair, and partial meniscectomy. J Bone Joint Surg Am 92:1398–1408

    Article  PubMed  Google Scholar 

  5. Butterfield TA, Herzog W (2005) Is the force-length relationship a useful indicator of contractile element damage following eccentric exercise? J Biomech 38:1932–1937

    Article  PubMed  Google Scholar 

  6. Clark AL, Herzog W, Leonard TR (2002) Contact area and pressure distribution in the feline patellofemoral joint under physiologically meaningful loading conditions. J Biomech 35:53–60

    Article  CAS  PubMed  Google Scholar 

  7. Fukubayashi T, Kurosawa T (1980) The contact area and pressure distribution pattern of the knee. A study of normal and osteoarthritic knee joints. Acta Orthop Scand 51:871–879

    Article  CAS  PubMed  Google Scholar 

  8. Grover DM, Chen AA, Hazelwood SJ (2007) Biomechanics of the rabbit knee and ankle: muscle, ligament, and joint contact force predictions. J Biomech 40:2816–2821

    Article  PubMed  Google Scholar 

  9. Gushue D, Houck J, Lerner AL (2005) Rabbit knee joint biomechanics: motion analysis and modeling of forces during hopping. J Orthop Res 23:735–742

    Article  PubMed  Google Scholar 

  10. Isaac DI, Meyer EG, Haut RC (2010) Development of a traumatic anterior cruciate ligament and meniscal rupture model with a pilot in vivo study. J Biomech Eng 132:464–501

    Article  Google Scholar 

  11. Kääb MJ, Ito K, Clark JM, Nötzli HP (2000) The acute structural changes of loaded articular cartilage following meniscectomy or ACL-transection. Osteoarthritis Cartilage 8:464–473

    Article  PubMed  Google Scholar 

  12. Kim JG, Lee YS, Bae TS, Ha JK, Lee DH, Kim YJ, Ra HJ (2013) Tibiofemoral contact mechanics following posterior root of medial meniscus tear, repair, meniscectomy, and allograft transplantation. Knee Surg Sports Traumatol Arthrosc 21:2121–2125

    Article  PubMed  Google Scholar 

  13. Kurosawa H, Fukubayashi T, Nakajima HL (1980) Load-bearing mode of the knee joint: physical behaviour of the knee joint with or without menisci. Clin Orthop Relat Res 149:283–290

    PubMed  Google Scholar 

  14. Leumann A, Fortuna R, Leonard T, Valderrabano V, Herzog W (2013) Dynamic in vivo force transfer in the lapine knee loaded by quadriceps muscle contraction. Clin Biomech 28:199–204

    Article  Google Scholar 

  15. Liggins AB, Hardie WR, Finlay JB (1994) Sterilization of Fuji pressure-sensitive film. Med Eng Phys 16:496–500

    Article  CAS  PubMed  Google Scholar 

  16. Longino D, Frank C, Leonard TR, Vaz MA, Herzog W (2005) Proposed model of botulinum toxin-induced muscle weakness in the rabbit. J Orthop Res 23:1411–1418

    Article  CAS  PubMed  Google Scholar 

  17. Maas H, Baan G, Huijing P (2004) Muscle force is determined also by muscle relative position: isolated effects. J Biomech 37:99–110

    Article  PubMed  Google Scholar 

  18. Martens T, Hull M, Howell S (1997) An in vitro osteotomy method to expose the medial compartment of the human knee. J Biomech Eng 119:379–385

    Article  CAS  PubMed  Google Scholar 

  19. McDermott ID, Amis AA (2006) The consequences of meniscectomy. J Bone Joint Br 68:1549–1556

    Article  Google Scholar 

  20. McDermott ID, Masouros SD, Amis AA (2008) Biomechanics of the menisci of the knee. Curr Orthop 22:193–201

    Article  Google Scholar 

  21. Messner K, Fahlgren A, Persliden J, Andersson BM (2001) Radiographic joint space narrowing and histologic changes in a rabbit meniscectomy model of early knee osteoarthrosis. Am J Sports Med 29:151–160

    CAS  PubMed  Google Scholar 

  22. Ode GE, Van Thiel GS, McArthur SA, Dishkin-Paset J, Leurgans SE, Shewman EF, Wang VM, Cole BJ (2012) Effects of serial sectioning and repair of radial tears in the lateral meniscus. Am J Sports Med 40:1863–1872

    Article  PubMed  Google Scholar 

  23. Paletta GA, Manning T, Snell E, Parker R (1997) The effect of allograft meniscal replacement on intraarticular contact area and pressures in the human knee. A biomechanical study. Am J Sports Med 25:692–698

    Article  PubMed  Google Scholar 

  24. Petty CA, Lubowitz JH (2011) Does arthroscopic partial meniscectomy result in knee osteoarthritis? A systematic review. Arthroscopy 27:419–424

    Article  PubMed  Google Scholar 

  25. Proffen BL, McElfresh M, Fleming BC, Murray MM (2012) A comparative anatomical study of the human knee and six animal species. Knee 19:493–499

    Article  PubMed Central  PubMed  Google Scholar 

  26. Pozzi A, Tonks CA, Ling HY (2010) Femorotibial contact mechanics and meniscal strain after serial meniscectomy. Vet Surg 39:482–488

    Article  PubMed  Google Scholar 

  27. Rehan Youssef A, Longino D, Seerattan R, Leonard T, Herzog W (2009) Muscle weakness causes joint degeneration in rabbits. Osteoarthritis Cartilage 17:1228–1235

    Article  CAS  PubMed  Google Scholar 

  28. Roemhildt ML, Coughlin KM, Peura GD, Badger GJ, Churchill D, Fleming BC, Beynnon BD (2010) Effects of increased chronic loading on articular cartilage material properties in the Lapine tibio-femoral joint. J Biomech 43:2301–2308

    Article  PubMed Central  PubMed  Google Scholar 

  29. Ronsky JL, Herzog W, Brown TD, Pedersen DR, Grood RS, Butler DL (1995) In vivo quantification of the cat patellofemoral joint contact stresses and areas. J Biomech 28:977–983

    Article  CAS  PubMed  Google Scholar 

  30. Roos EM, Ostenberg A, Roos H, Ekdahl C, Lohmander LS (2001) Long-term outcome of meniscetomy: symptoms, function, and performance tests in patients with or without radiographic osteoarthritis compared to matched controls. Osteoarthritis Cartilage 9:316–324

    Article  CAS  PubMed  Google Scholar 

  31. Roos H, Lauren M, Adalberth T, Roos EM, Jonsson K, Lohmander LS (1998) Knee osteoarthritis after meniscectomy: prevalence of radiographic changes after twenty-one years, compared with matched controls. Arthritis Rheum 41:687–693

    Article  CAS  PubMed  Google Scholar 

  32. Sawatsky A, Bourne D, Horisberger M, Jinha A, Herzog W (2012) Changes in patellofemoral joint contact pressures caused by vastus medialis muscle weakness. Clin Biomech 27:595–601

    Article  Google Scholar 

  33. Shirazi R, Shirazi-Adl A (2009) Analysis of partial meniscectomy and ACL reconstruction in knee joint biomechanics under a combined loading. Clin Biomech 24:755–761

    Article  CAS  Google Scholar 

  34. Von Lewinski G, Stukenborg-Colsman C, Ostermeier S, Hurschler C (2006) Experimental measurement of tibiofemoral contact area in a meniscectomized ovine model using a resistive pressure measuring sensor. Ann Biomed Eng 34:1607–1614

    Article  Google Scholar 

  35. Wu JZ, Herzog W, Epstein M (1998) Effects of inserting a pressensor film into articular joints on the actual contact mechanics. J Biomech Eng 120:655–659

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the CIHR, the Canada Research Chair Program (WH), The Killam Foundation, the Alberta Heritage Foundation for Medical Research, the AHFMR Team Grant for Osteoarthritis, the Swiss National Foundation (PBBEP3-125614), and the Swiss Orthopaedic Society (AL). The authors would like to thank Azim Jinha for technical assistance.

Conflict of interest

None of the authors have anything to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Herzog.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leumann, A., Fortuna, R., Leonard, T. et al. Tibiofemoral loss of contact area but no changes in peak pressures after meniscectomy in a Lapine in vivo quadriceps force transfer model. Knee Surg Sports Traumatol Arthrosc 23, 65–73 (2015). https://doi.org/10.1007/s00167-014-3338-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-014-3338-1

Keywords

Navigation