Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 23, Issue 6, pp 1622–1630 | Cite as

Deep-dished highly congruent tibial insert in CR-TKA does not prevent patellar tendon angle increase and patellar anterior translation

  • Ibrahim AkkawiEmail author
  • Francesca Colle
  • Danilo Bruni
  • Giovanni Francesco Raspugli
  • Simone Bignozzi
  • Stefano Zaffagnini
  • Francesco Iacono
  • Maurilio Marcacci



Starting from the hypothesis that a deep-dished highly congruent tibial insert in cruciate-retaining total knee arthroplasty would prevent the increase in patellar tendon angle and anterior patellar translation by reducing the paradoxical anterior femoral translation, the main purpose of the present study was to investigate the effect of this prosthesis design, and secondary to assess the clinical outcomes at 6-month follow-up.


Twenty patients treated with cruciate-retaining total knee arthroplasty with navigation technique were enrolled and prospectively followed up at 6 months. The median value of age was 71 years (57–83). Before and after surgery, the following parameters were calculated: patellar tendon angle, anterior–posterior and medio-lateral patellar translation, patellar height and range of motion. All patients were assessed with the SF-36 Physical Functioning and the Knee injury and Osteoarthritis Outcome Score ADL scores.


Patellar tendon angle and anterior patellar translation significantly increased in post-operative conditions (p < 0.0001); a statistically significant medial patellar translation was found (p < 0.0001), while patellar height did not show any difference between pre- and post-operative conditions (n.s). A significant correlation was found between patellar tendon angle and anterior patellar translation and the clinical scores (p < 0.0417). There was a significant post-operative decrease (p < 0.0033) in the range of motion.


The present study failed to demonstrate that deep-dished highly congruent tibial insert prevents the anterior translation of the patella in cruciate-retaining total knee arthroplasty, thus causing inferior clinical scores. It provided useful information about the biomechanical role of the patella in total knee arthroplasty, allowing to choose the most appropriate surgical approach.

Level of evidence

Case series, Level IV.


Total knee arthroplasty Patellar tendon angle Anterior patellar translation Clinical scores 



The authors would like to particularly thank Silvia Bassini for her remarkable contribution to improve the graphics of this paper.


  1. 1.
    Abolghasemian M, Samiezadeh S, Sternheim A, Bougherara H, Barnes CL, Backstein DJ (2013) Effect of patellar thickness on knee flexion in total knee arthroplasty: a biomechanical and experimental study. J Arthroplast 29(1):80–84CrossRefGoogle Scholar
  2. 2.
    Anagnostakos K, Lorbach O, Reiter S, Kohn D (2011) Comparison of five patellar height measurement methods in 90° knee flexion. Int Orthop 35(12):1791–1797CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Andriacchi TP, Yoder D, Conley A, Rosenberg A, Sum J, Galante JO (1997) Patellofemoral design influences function following total knee arthroplasty. J Arthroplast 12(3):243–249CrossRefGoogle Scholar
  4. 4.
    Anglin C, Brimacombe JM, Hodgson AJ, Masri BA, Greidanus NV, Tonetti J, Wilson DR (2008) Determinants of patellar tracking in total knee arthroplasty. Clin Biomech (Bristol, Avon) 23(7):900–910CrossRefGoogle Scholar
  5. 5.
    Anglin C, Ho KC, Briard JL, de Lambilly C, Plaskos C, Nodwell E, Stindel E (2008) In vivo patellar kinematics during total knee arthroplasty. Comput Aided Surg 13(6):377–391CrossRefPubMedGoogle Scholar
  6. 6.
    Armstrong AD, Brien HJ, Dunning CE, King GJ, Johnson JA, Chess DG (2003) Patellar position after total knee arthroplasty: influence of femoral component malposition. J Arthroplast 18(4):458–465CrossRefGoogle Scholar
  7. 7.
    Bellemans J, Banks S, Victor J, Vandenneucker H, Moemans A (2002) Fluoroscopic analysis of the kinematics of deep flexion in total knee arthroplasty. Influence of posterior condylar offset. J Bone Jt Surg Br 84(1):50–53CrossRefGoogle Scholar
  8. 8.
    Belvedere C, Catani F, Ensini A, Moctezuma de la Barrera JL, Leardini A (2007) Patellar tracking during total knee arthroplasty: an in vitro feasibility study. Knee Surg Sports Traumatol Arthrosc 15(8):985–993CrossRefPubMedGoogle Scholar
  9. 9.
    Bertin KC, Komistek RD, Dennis DA, Hoff WA, Anderson DT, Langer T (2002) In vivo determination of posterior femoral rollback for subjects having a NexGen posterior cruciate-retaining total knee arthroplasty. J Arthroplast 17(8):1040–1048CrossRefGoogle Scholar
  10. 10.
    Casino D, Martelli S, Zaffagnini S, Lopomo N, Iacono F, Bignozzi S, Visani A, Marcacci M (2009) Knee stability before and after total and unicondylar knee replacement: in vivo kinematic evaluation utilizing navigation. J Orthop Res 27(2):202–207CrossRefPubMedGoogle Scholar
  11. 11.
    Chonko DJ, Lombardi AV Jr, Berend KR (2004) Patella baja and total knee arthroplasty (TKA): etiology, diagnosis, and management. Surg Technol Int 12:231–238PubMedGoogle Scholar
  12. 12.
    Christen B, Neukamp M, Aghayev E (2012) No difference in anterior tibial translation with and without posterior cruciate ligament in less invasive total knee replacement. Knee Surg Sports Traumatol Arthrosc 20(3):503–509CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Cole GK, Nigg BM, Ronsky JL, Yeadon MR (1993) Application of the joint coordinate system to three-dimensional joint attitude and movement representation: a standardization proposal. J Biomech Eng 115(4A):344–349CrossRefPubMedGoogle Scholar
  14. 14.
    Daniilidis K, Höll S, Gosheger G, Dieckmann R, Martinelli N, Ostermeier S, Tibesku CO (2013) Femoro-tibial kinematics after TKA in fixed- and mobile-bearing knees in the sagittal plane. Knee Surg Sports Traumatol Arthrosc 21(10):2392–2397CrossRefPubMedGoogle Scholar
  15. 15.
    Roos EM, Lohmander LS (2003) The Knee injury and Osteoarthritis Outcome Score (KOOS): from joint injury to osteoarthritis. Health Qual Life Outcomes 1:64CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Fantozzi S, Catani F, Ensini A, Leardini A, Giannini S (2006) Femoral rollback of cruciate-retaining and posterior-stabilized total knee replacements: in vivo fluoroscopic analysis during activities of daily living. J Orthop Res 24(12):2222–2229CrossRefPubMedGoogle Scholar
  17. 17.
    Flören M, Davis J, Peterson MG, Laskin RS (2007) A mini-midvastus capsular approach with patellar displacement decreases the prevalence of patella baja. J Arthroplast 22(6 Suppl 2):51–57CrossRefGoogle Scholar
  18. 18.
    Grelsamer RP, Weinstein CH (2001) Applied biomechanics of the patella. Clin Orthop Relat Res 389:9–14CrossRefPubMedGoogle Scholar
  19. 19.
    Grood ES, Suntay WJ (1983) A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng 105(2):136–144CrossRefPubMedGoogle Scholar
  20. 20.
    Hartford JM, Banit D, Hall K, Kaufer H (2001) Radiographic analysis of low contact stress meniscal bearing total knee replacements. J Bone Jt Surg Am 83-A(2):229–234Google Scholar
  21. 21.
    Heim CS, Postak PD, Plaxton NA, Greenwald AS (2001) Classification of mobile-bearing knee designs: mobility and constraint. J Bone Jt Surg Am 83-A(Suppl 2(Pt 1)):32–37Google Scholar
  22. 22.
    Hofmann AA, Tkach TK, Evanich CJ, Camargo MP (2000) Posterior stabilization in total knee arthroplasty with use of an ultracongruent polyethylene insert. J Arthroplast 15(5):576–583CrossRefGoogle Scholar
  23. 23.
    Hollinghurst D, Stoney J, Ward T, Pandit H, Beard D, Murray DW (2007) In vivo sagittal plane kinematics of the Avon patellofemoral arthroplasty. J Arthroplast 22(1):117–123CrossRefGoogle Scholar
  24. 24.
    Hsu HC, Luo ZP, Rand JA et al (1996) Influence of patellar thickness on patellar tracking and patellofemoral contact characteristics after total knee arthroplasty. J Arthroplast 11:69–80CrossRefGoogle Scholar
  25. 25.
    Innocenti B, Pianigiani S, Labey L, Victor J, Bellemans J (2011) Contact forces in several TKA designs during squatting: a numerical sensitivity analysis. J Biomech 44(8):1573–1581CrossRefPubMedGoogle Scholar
  26. 26.
    Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16(4):494–502CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Laskin RS, Maruyama Y, Villaneuva M, Bourne R (2000) Deep-dish congruent tibial component use in total knee arthroplasty: a randomized prospective study. Clin Orthop Relat Res 380:36–44CrossRefPubMedGoogle Scholar
  28. 28.
    Li G, Papannagari R, Nha KW, Defrate LE, Gill TJ, Rubash HE (2007) The coupled motion of the femur and patella during in vivo weightbearing knee flexion. J Biomech Eng 129(6):937–943CrossRefPubMedGoogle Scholar
  29. 29.
    Louisia S, Siebold R, Canty J, Bartlett RJ (2005) Assessment of posterior stability in total knee replacement by stress radiographs: prospective comparison of two different types of mobile bearing implants. Knee Surg Sports Traumatol Arthrosc 13:476–482CrossRefPubMedGoogle Scholar
  30. 30.
    Martelli S, Zaffagnini S, Bignozzi S, Bontempi M, Marcacci M (2006) Validation of a new protocol for computer-assisted evaluation of kinematics of double-bundle ACL reconstruction. Clin Biomech (Bristol, Avon) 21(3):279–287CrossRefGoogle Scholar
  31. 31.
    Massin P, Boyer P, Sabourin M (2012) Less femorotibial rotation and AP translation in deep-dished total knee arthroplasty. An intraoperative kinematic study using navigation. Knee Surg Sports Traumatol Arthrosc 20(9):1714–1719CrossRefPubMedGoogle Scholar
  32. 32.
    Meneghini RM, Ritter MA, Pierson JL, Meding JB, Berend ME, Faris PM (2006) The effect of the Insall-Salvati ratio on outcome after total knee arthroplasty. J Arthroplast 21(6 Suppl 2):116–120CrossRefGoogle Scholar
  33. 33.
    Merican AM, Ghosh KM, Baena FR, Deehan DJ, Amis AA (2012) Patellar thickness and lateral retinacular release affects patellofemoral kinematics in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. doi: 10.1007/s00167-012-2312-z Google Scholar
  34. 34.
    Merican AM, Ghosh KM, Iranpour F, Deehan DJ, Amis AA (2011) The effect of femoral component rotation on the kinematics of the tibiofemoral and patellofemoral joints after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 19(9):1479–1487CrossRefPubMedGoogle Scholar
  35. 35.
    Miller RK, Goodfellow JW, Murray DW, O’Connor JJ (1998) In vitro measurement of patellofemoral force after three types of knee replacement. J Bone Jt Surg Br 80(5):900–906CrossRefGoogle Scholar
  36. 36.
    Pal S, Besier TF, Draper CE, Fredericson M, Gold GE, Beaupre GS, Delp SL (2012) Patellar tilt correlates with vastus lateralis: vastus medialis activation ratio in maltracking patellofemoral pain patients. J Orthop Res 30(6):927–933CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Pandit H, Van Duren BH, Gallagher JA, Beard DJ, Dodd CA, Gill HS, Murray DW (2008) Combined anterior cruciate reconstruction and Oxford unicompartmental knee arthroplasty: in vivo kinematics. Knee 15(2):101–106CrossRefPubMedGoogle Scholar
  38. 38.
    Price AJ, Rees JL, Beard DJ, Gill RH, Dodd CA, Murray DM (2004) Sagittal plane kinematics of a mobile-bearing unicompartmental knee arthroplasty at 10 years: a comparative in vivo fluoroscopic analysis. J Arthroplast 19(5):590–597CrossRefGoogle Scholar
  39. 39.
    Sakai N, Luo ZP, Rand JA, An KN (2000) The influence of weakness in the vastus medialis oblique muscle on the patellofemoral joint: an in vitro biomechanical study. Clin Biomech (Bristol, Avon) 15(5):335–339CrossRefGoogle Scholar
  40. 40.
    Stagni R, Fantozzi S, Catani F, Leardini A (2010) Can patellar tendon angle reveal sagittal kinematics in total knee arthroplasty? Knee Surg Sports Traumatol Arthrosc 18(7):949–954CrossRefPubMedGoogle Scholar
  41. 41.
    Tibesku CO, Daniilidis K, Vieth V, Skwara A, Heindel W, Fuchs-Winkelmann S (2011) Sagittal plane kinematics of fixed- and mobile-bearing total knee replacements. Knee Surg Sports Traumatol Arthrosc 19(9):1488–1495CrossRefPubMedGoogle Scholar
  42. 42.
    Ware JE Jr, Sherbourne CD (1992) The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care 30(6):473–483CrossRefPubMedGoogle Scholar
  43. 43.
    Weale AE, Murray DW, Newman JH, Ackroyd CE (1999) The length of the patellar tendon after unicompartmental and total knee replacement. J Bone Jt Surg Br 81(5):790–795CrossRefGoogle Scholar
  44. 44.
    Wiles AD, Thompson DG, Frantz DD (2004) Accuracy assessment and interpretation for optical tracking systems. Proc SPIE 5367:421–432Google Scholar
  45. 45.
    Yue B, Varadarajan KM, Rubash HE, Li G (2012) In vivo function of posterior cruciate ligament before and after posterior cruciate ligament-retaining total knee arthroplasty. Int Orthop 36(7):1387–1392CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ibrahim Akkawi
    • 1
    Email author
  • Francesca Colle
    • 1
    • 2
    • 3
  • Danilo Bruni
    • 1
  • Giovanni Francesco Raspugli
    • 1
  • Simone Bignozzi
    • 1
  • Stefano Zaffagnini
    • 1
  • Francesco Iacono
    • 1
  • Maurilio Marcacci
    • 1
  1. 1.Biomechanics and Technological Innovation Laboratory, Codivilla-Putti Research CenterBologna UniversityBolognaItaly
  2. 2.Laboratorio di NanoBiotecnologie-NaBiIstituto Ortopedico RizzoliBolognaItaly
  3. 3.The Biorobotics InstituteScuola Superiore Sant’AnnaPisaItaly

Personalised recommendations