Skip to main content

ACL footprint size is correlated with the height and area of the lateral wall of femoral intercondylar notch

Abstract

Purpose

The purpose of this study was to reveal the correlation between the size of the native anterior cruciate ligament (ACL) footprint and the size of the lateral wall of femoral intercondylar notch.

Methods

Eighteen non-paired human cadaver knees were used. All soft tissues around the knee were resected except the ACL. The ACL was cut in the middle, and the femoral bone was cut at the most proximal point of the femoral notch. The ACL was carefully dissected, and the periphery of the ACL insertion site was outlined on both the femoral and tibial sides. An accurate lateral view of the femoral condyle and the tibial plateau was photographed with a digital camera, and the images were downloaded to a personal computer. The size of the femoral and tibial ACL footprints, length of Blumensaat’s line, and the height and area of the lateral wall of femoral intercondylar notch were measured with Image J software (National Institution of Health).

Results

The sizes of the native femoral and tibial ACL footprints were 84 ± 25.3 and 144.7 ± 35.9 mm2, respectively. The length of Blumensaat’s line and the height and area of the lateral wall of femoral intercondylar notch were 29.4 ± 2.8 mm, 17.1 ± 2.7 mm, and 392.4 ± 86 mm2, respectively. Both the height and the area of the lateral wall of femoral intercondylar notch were significantly correlated with the size of the ACL footprint on both the femoral and tibial sides.

Conclusion

For clinical relevance, the height and area of the lateral wall of femoral intercondylar notch can be a predictor of native ACL size prior to surgery. However, the length of Blumensaat’s line showed no significant correlation with native ACL size.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

ACL:

Anterior cruciate ligament

AM:

Antero-medial bundle

PL:

Postero-lateral bundle

References

  1. 1.

    Brophy RH, Selby RM, Altchek DW (2006) Anterior cruciate ligament revision: double-bundle augmentation of primary vertical graft. Arthroscopy 22 (6):683 e1–683 e5

    Google Scholar 

  2. 2.

    Darcy SP, Kilger RH, Woo SL, Debski RF (2006) Estimation of ACL forces by reproducing knee kinematics between sets of knees: a novel noninvasive methodology. J Bionech 39(13):2371–2377

    Article  Google Scholar 

  3. 3.

    Dargel J, Pohl P, Tzikaras P et al (2006) Morphometric side-to side differences in human cruciate ligament insertions. Surg Radiol Anat 28(4):398–402

    PubMed  Article  Google Scholar 

  4. 4.

    Davis TJ, Shelbourne KD, Klootwyk TE (1999) Correlation of the intercondylar notch width of the femur to the width of the anterior and posterior cruciate ligaments. Knee Surg Sports Traumatol Arthrosc 7:209–214

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Ferretti M, Ekdahl M, Shen W, Fu FH (2007) Osseous landmarks of the femoral attachment of the anterior cruciate ligament: an anatomic study. Arthroscopy 23(11):1218–1225

    PubMed  Article  Google Scholar 

  6. 6.

    Fu FH (2011) Double-bundle ACL reconstruction. Orthopedics 34(4):281–283

    PubMed  Article  Google Scholar 

  7. 7.

    Harner CD, Baek GH, Vogrin TM et al (1999) Quantitative analysis of human cruciate ligament insertions. Arthroscopy 15(7):741–749

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Iriuchishima T, Tajima G, Ingham SJ et al (2009) Intercondylar roof impingement pressure after anterior cruciate ligament reconstruction in a porcine model. Knee Surg Sports Traumatol Arthrosc 17(6):590–594

    PubMed  Article  Google Scholar 

  9. 9.

    Iriuchishima T, Tajima G, Shirakura K et al (2011) In vitro and in vivo AM and PL tunnel positioning in anatomical double bundle anterior cruciate ligament reconstruction. Arch Orthop Trauma Surg 131(8):1085–1090

    PubMed  Article  Google Scholar 

  10. 10.

    Iriuchishima T, Ingham SJ, Tajima G et al (2010) Evaluation of the tunnel placement in the anatomical double-bundle ACL reconstruction: a cadaver study. Knee Surg Sports Traumatol Arthrosc 18(9):1226–1231

    PubMed  Article  Google Scholar 

  11. 11.

    Iriuchishima T, Tajima G, Ingham SJ, Shen W, Smolinski P, Fu FH (2010) Impingement pressure in the anatomical and non anatomical anterior cruciate ligament reconstruction: a cadaver study. Am J Sports Med 38(8):1611–1617

    PubMed  Article  Google Scholar 

  12. 12.

    Iriuchishima T, Horaguchi T, Kubomura T, Morimoto Y, Fu FH (2011) Evaluation of the intercondylar roof impingement after anatomical double-bundle anterior cruciate ligament reconstruction using 3D-CT. Knee Surg Sports Traumatol Arthrosc 19(4):674–679

    PubMed  Article  Google Scholar 

  13. 13.

    Karlsson J, Irrgang JJ, van Eck CF, Samuelsson K, Mejia HA, Fu FH (2011) Anatomic single- and double-bundle anterior cruciate ligament reconstruction. Part 2: clinical application of surgical technique. Am J Sports Med 39(9):2016–2026

    PubMed  Article  Google Scholar 

  14. 14.

    Kondo E, Yasuda K, Azuma H, Tanabe Y, Yagi T (2008) Prospective clinical comparisons of anatomic double-bundle versus single-bundle anterior cruciate ligament reconstruction procedures in 328 consecutive patients. Am J Sports Med 36(9):1675–1687

    PubMed  Article  Google Scholar 

  15. 15.

    Kopf S, Musahl V, Tashman S, Szczodry M, Shen W, Fu FH (2009) A systematic review of the femoral origin and tibial insertion morphology of the ACL. Knee Surg Sports Traumatol Arthrosc 17(3):213–219

    PubMed  Article  Google Scholar 

  16. 16.

    Kopf S, Pombo MW, Szczodry M, Irrgang JJ, Fu FH (2011) Size variability of the human anterior cruciate ligament insertion sites. Am J Sports Med 39(1):108–1013

    PubMed  Article  Google Scholar 

  17. 17.

    Loh JC, Fukuda Y, Tsuda E, Steadman RJ, Fu FH, Woo SL (2003) Knee stability and graft function following anterior cruciate ligament reconstruction: comparison between 11 o’clock and 10 o’clock femoral tunnel placement. Arthroscopy 19(3):297–304

    PubMed  Article  Google Scholar 

  18. 18.

    Luites JW, Wymenga AB, Blankevoort L et al (2007) Description of the attachment geometry of the anteromedial and posterolateral bundles of the ACL from arthroscopic perspective for anatomical tunnel placement. Knee Surg Sports Traumatol Arthrosc 15(12):1422–1431

    PubMed  Article  Google Scholar 

  19. 19.

    Maeyama A, Hoshino Y, Debandi A et al (2011) Evaluation of rotational instability in the anterior cruciate ligament deficient knee using triaxial accelerometer: a biomechanical model in porcine knees. Knee Surg Sports Traumatol Arthrosc 19(8):1233–1238

    PubMed  Article  Google Scholar 

  20. 20.

    Muneta T, Koga H, Mochizuki T et al (2007) A prospective randomized study of 4-strand semitendinosus tendon anterior cruciate ligament reconstruction comparing single-bundle and double bundle techniques. Arthroscopy 23(6):618–628

    PubMed  Article  Google Scholar 

  21. 21.

    Muneta T, Takakuda K, Yamamoto H (1997) Intercondylar notch width and its relation to the configuration and cross-sectional area of the anterior cruciate ligament. A cadaveric knee study. Am J Sports Med 25(1):69–72

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Niki Y, Matsumoto H, Hakozaki A, Kanagawa H, Toyama Y, Suda Y (2011) Anatomic double-bundle anterior cruciate ligament reconstruction using bone-patellar tendon-bone and gracilis tendon graft: a comparative study with 2-year follow-up results of semitendinosus tendon grafts alone or semitendinosus-gracilis tendon grafts. Arthroscopy 27(9):1242–1251

    PubMed  Article  Google Scholar 

  23. 23.

    Okada E, Matsumoto M, Ichihara D et al (2011) Cross-sectional area of posterior extensor muscles of the cervical spine in asymptomatic subjects: a 10-year longitudinal magnetic resonance imaging study. Eur Spine J 20(9):1567–1573

    PubMed  Article  Google Scholar 

  24. 24.

    Shin SH, Jeon IH, Kim HJ et al (2010) Articular surface area of the coronoid process and radial head in elbow extension: surface ration in cadavers and a computed tomography in vivo. J Hand Surg Am 35(7):1120–1125

    PubMed  Article  Google Scholar 

  25. 25.

    Shino K, Nakata K, Nakamura N et al (2008) Rectangular tunnel double-bundle anterior cruciate ligament reconstruction with bone-patellar tendon-bone graft to mimic natural fiber arrangement. Arthroscopy 24(10):1178–1183

    PubMed  Article  Google Scholar 

  26. 26.

    Siebold R, Ellert T, Metz S et al (2008) Femoral insertions of the anteromedial and posterolateral bundles of the anterior cruciate ligament: morphometry and arthroscopic orientation models for double-bundle bone tunnel placement-a cadaver study. Arthroscopy 24(5):585–592

    PubMed  Article  Google Scholar 

  27. 27.

    Siebold R, Ellert T, Metz S et al (2008) Tibial insertions of the anteromedial and posterolateral bundles of the anterior cruciate ligament: morphometry, arthroscopic landmarks, and orientation model for bone tunnel placement. Arthroscopy 24(2):154–161

    PubMed  Article  Google Scholar 

  28. 28.

    Steiner ME, Murray MM, Rodeo SA (2008) Strategies to improve anterior cruciate ligament healing and graft placement. Am J Sports Med 36(1):176–189

    PubMed  Article  Google Scholar 

  29. 29.

    Stijak L, Randonjic V, Nikolic V, Blagojevic Z, Aksic M, Filipovic B (2009) Correlation between the morphometric parameters of the anterior cruciate ligament and the intercondylar width: gender and age difference. Knee Surg Sports Traumatol Arthrosc 17:812–817

    PubMed  Article  Google Scholar 

  30. 30.

    Takahashi M, Doi M, Abe M et al (2006) Anatomical study of the femoral and tibial insertions of the anteromedial and posterolateral bundles of human anterior cruciate ligament. Am J Sports Med 34(5):787–792

    Google Scholar 

  31. 31.

    Tompkins M, Ma R, Hogan MV, Miller MD (2011) What’s new in sports medicine. J Bone Joint Surg Am 93(8):789–797

    PubMed  Article  Google Scholar 

  32. 32.

    van Eck CF, Kopf S, van Dijk CN, Fu FH, Tashman S (2011) Comparison of 3-dimensional notch volume between subjects with and subjects without anterior cruciate ligament rupture. Arthroscopy 27:1235–1241

    PubMed  Article  Google Scholar 

  33. 33.

    van Eck CF, Martins CA, Vyas SM, Celentano U, van Dijk CN, Fu FH (2010) Femoral intercondylar notch shape and dimensions in ACL-injured patients. Knee Surg Sports Traumatol Arthosc 18:1257–1262

    Article  Google Scholar 

  34. 34.

    Wolters F, Vrooijink SH, Van Eck CF, Fu FH (2011) Does notch size predict ACL insertion site size? Knee Surg Sports Traumatol Arthrosc 19:S17–S21

    PubMed  Article  Google Scholar 

  35. 35.

    Wu E, Chen M, Cooperman D, Victoroff B, Goodfellow D, Farrow LD (2011) No correlation of height or gender with anterior cruciate ligament footprint size. J Knee Surg 24:39–43

    PubMed  Article  Google Scholar 

  36. 36.

    Yagi M, Wong EK, Kanamori A, Debski RE, Fu FH, Woo SL (2002) Biomechanical analysis of anatomic anterior cruciate ligament reconstruction. Am J Sports Med 30(5):660–666

    PubMed  Google Scholar 

  37. 37.

    Yasuda K, Kondo E, Ichiyama H, Tanabe Y, Tohyama H (2006) Clinical evaluation of anatomic double-bundle anterior cruciate ligament reconstruction procedure using hamstring tendon grafts: comparisons among three different procedures. Arthroscopy 22(3):240–251

    PubMed  Article  Google Scholar 

  38. 38.

    Yasuda K, van Eck CF, Hoshino Y, Fu FH, Tashman S (2011) Anatomic single-and double-bundle anterior cruciate ligament reconstruction. Part 1: basic science. Am J Sports Med 39(8):1789–1799

    PubMed  Article  Google Scholar 

  39. 39.

    Zantop T, Wellmann M, Fu FH, Peterson W (2008) Tunnel positioning of anteromedial and posterolateral bundles in anatomic anterior cruciate ligament reconstruction: anatomic and radiographic findings. Am J Sports Med 36(1):65–72

    PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Takanori Iriuchishima.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Iriuchishima, T., Shirakura, K., Yorifuji, H. et al. ACL footprint size is correlated with the height and area of the lateral wall of femoral intercondylar notch. Knee Surg Sports Traumatol Arthrosc 21, 789–796 (2013). https://doi.org/10.1007/s00167-012-2044-0

Download citation

Keywords

  • Anterior cruciate ligament
  • Anatomy
  • Double bundle
  • Femoral condyle