Changing sagittal plane body position during single-leg landings influences the risk of non-contact anterior cruciate ligament injury

  • Yohei Shimokochi
  • Jatin P. Ambegaonkar
  • Eric G. Meyer
  • Sae Yong Lee
  • Sandra J. Shultz
Knee

Abstract

Purpose

To examine the effects of different sagittal plane body positions during single-leg landings on biomechanics and muscle activation parameters associated with risk for anterior cruciate ligament (ACL) injury.

Methods

Twenty participants performed single-leg drop landings onto a force plate using the following landing styles: self-selected, leaning forward (LFL) and upright (URL). Lower extremity and trunk 3D biomechanics and lower extremity muscle activities were recorded using motion analysis and surface electromyography, respectively. Differences in landing styles were examined using 2-way Repeated-measures ANOVAs (sex × landing conditions) followed by Bonferroni pairwise comparisons.

Results

Participants demonstrated greater peak vertical ground reaction force, greater peak knee extensor moment, lesser plantar flexion, lesser or no hip extensor moments, and lesser medial and lateral gastrocnemius and lateral quadriceps muscle activations during URL than during LFL. These modifications of lower extremity biomechanics across landing conditions were similar between men and women.

Conclusions

Leaning forward while landing appears to protect the ACL by increasing the shock absorption capacity and knee flexion angles and decreasing anterior shear force due to the knee joint compression force and quadriceps muscle activation. Conversely, landing upright appears to be ACL harmful by increasing the post-impact force of landing and quadriceps muscle activity while decreasing knee flexion angles, all of which lead to a greater tibial anterior shear force and ACL loading. ACL injury prevention programmes should include exercise regimens to improve sagittal plane body position control during landing motions.

Keywords

Anterior cruciate ligament injury Injury prevention Electromyography Sagittal plane biomechanics Lower extremity 

References

  1. 1.
    Arms SW, Pope MH, Johnson RJ, Fischer RA, Arvidsson I, Eriksson E (1984) The biomechanics of anterior cruciate ligament rehabilitation and reconstruction. Am J Sports Med 12(1):8–18PubMedCrossRefGoogle Scholar
  2. 2.
    Baratta R, Solomonow M, Zhou BH, Letson D, Chuinard R, D’Ambrosia R (1988) Muscular coactivation. The role of the antagonist musculature in maintaining knee stability. Am J Sports Med 16(2):113–122PubMedCrossRefGoogle Scholar
  3. 3.
    Blackburn JT, Padua DA (2008) Influence of trunk flexion on hip and knee joint kinematics during a controlled drop landing. Clin Biomech (Bristol Avon) 23(3):313–319CrossRefGoogle Scholar
  4. 4.
    Blackburn JT, Padua DA (2009) Sagittal-plane trunk position, landing forces, and quadriceps electromyographic activity. J Athl Train 44(2):174–179PubMedCrossRefGoogle Scholar
  5. 5.
    Boden BP, Dean GS, Feagin JA Jr, Garrett WE Jr (2000) Mechanisms of anterior cruciate ligament injury. Orthopedics 23(6):573–578PubMedGoogle Scholar
  6. 6.
    Boden BP, Torg JS, Knowles SB, Hewett TE (2009) Video analysis of anterior cruciate ligament injury: abnormalities in hip and ankle kinematics. Am J Sports Med 37(2):252–259PubMedCrossRefGoogle Scholar
  7. 7.
    Cerulli G, Benoit DL, Lamontagne M, Caraffa A, Liti A (2003) In vivo anterior cruciate ligament strain behaviour during a rapid deceleration movement: case report. Knee Surg Sports Traumatol Arthrosc 11(5):307–311PubMedCrossRefGoogle Scholar
  8. 8.
    Chappell JD, Herman DC, Knight BS, Kirkendall DT, Garrett WE, Yu B (2005) Effect of fatigue on knee kinetics and kinematics in stop-jump tasks. Am J Sports Med 33(7):1022–1029PubMedCrossRefGoogle Scholar
  9. 9.
    Cortes N, Morrison S, Van Lunen BL, Onate JA (2012) Landing technique affects knee loading and position during athletic tasks. J Sci Med Sport 15(2):175–181PubMedCrossRefGoogle Scholar
  10. 10.
    Cortes N, Onate J, Abrantes J, Gagen L, Dowling E, Van Lunen B (2007) Effects of gender and foot-landing techniques on lower extremity kinematics during drop-jump landings. J Appl Biomech 23(4):289–299PubMedGoogle Scholar
  11. 11.
    DeMorat G, Weinhold P, Blackburn T, Chudik S, Garrett W (2004) Aggressive quadriceps loading can induce noncontact anterior cruciate ligament injury. Am J Sports Med 32(2):477–483PubMedCrossRefGoogle Scholar
  12. 12.
    Hargrave MD, Carcia RC, Gansneder BM, Shultz SJ (2003) Subtalar pronation does not influence impact forces or rate of loading during a single-leg landing. J Athl Train 38(1):18–23PubMedGoogle Scholar
  13. 13.
    Hashemi J, Breighner R, Chandrashekar N, Hardy DM, Chaudhari AM, Shultz SJ, Slauterbeck JR, Beynnon BD (2011) Hip extension, knee flexion paradox: a new mechanism for non-contact ACL injury. J Biomech 44(4):577–585PubMedCrossRefGoogle Scholar
  14. 14.
    Hewett TE, Torg JS, Boden BP (2009) Video analysis of trunk and knee motion during non-contact anterior cruciate ligament injury in female athletes: lateral trunk and knee abduction motion are combined components of the injury mechanism. Br J Sports Med 43(6):417–422PubMedCrossRefGoogle Scholar
  15. 15.
    Kulas AS, Hortobagyi T, Devita P (2010) The interaction of trunk-load and trunk-position adaptations on knee anterior shear and hamstrings muscle forces during landing. J Athl Train 45(1):5–15PubMedCrossRefGoogle Scholar
  16. 16.
    Laughlin WA, Weinhandl JT, Kernozek TW, Cobb SC, Keenan KG, O’Connor KM (2011) The effects of single-leg landing technique on ACL loading. J Biomech 44(10):1845–1851PubMedCrossRefGoogle Scholar
  17. 17.
    Li G, Rudy TW, Sakane M, Kanamori A, Ma CB, Woo SL (1999) The importance of quadriceps and hamstring muscle loading on knee kinematics and in situ forces in the ACL. J Biomech 32(4):395–400PubMedCrossRefGoogle Scholar
  18. 18.
    McLean SG, Andrish JT, van den Bogert AJ (2005) Aggressive quadriceps loading can induce noncontact anterior cruciate ligament injury. Am J Sports Med 33(7):1106; author reply 1106–1107Google Scholar
  19. 19.
    Meyer EG, Haut RC (2005) Excessive compression of the human tibio-femoral joint causes ACL rupture. J Biomech 38(11):2311–2316PubMedCrossRefGoogle Scholar
  20. 20.
    Meyer EG, Haut RC (2008) Anterior cruciate ligament injury induced by internal tibial torsion or tibiofemoral compression. J Biomech 41(16):3377–3383PubMedCrossRefGoogle Scholar
  21. 21.
    Miyasaka K, Daniel D, Stone M (1991) The incidence of knee ligament injuries in the general population. Am J Knee Surg 4:43–48Google Scholar
  22. 22.
    Nunley R, Wright D, Renner J, Yu B, Garrett WJ (2003) Gender comparison of patella tendon tibial shaft angle with weight bearing. Res Sports Med 11(3):173–185CrossRefGoogle Scholar
  23. 23.
    Olsen OE, Myklebust G, Engebretsen L, Bahr R (2004) Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis. Am J Sports Med 32(4):1002–1012PubMedCrossRefGoogle Scholar
  24. 24.
    Pflum MA, Shelburne KB, Torry MR, Decker MJ, Pandy MG (2004) Model prediction of anterior cruciate ligament force during drop-landings. Med Sci Sports Exerc 36(11):1949–1958PubMedCrossRefGoogle Scholar
  25. 25.
    Rainoldi A, Melchiorri G, Caruso I (2004) A method for positioning electrodes during surface EMG recordings in lower limb muscles. J Neurosci Methods 134:37–43PubMedCrossRefGoogle Scholar
  26. 26.
    Self BP, Paine D (2001) Ankle biomechanics during four landing techniques. Med Sci Sports Exerc 33(8):1338–1344PubMedCrossRefGoogle Scholar
  27. 27.
    Sheehan FT, Sipprell WH 3rd, Boden BP (2012) Dynamic sagittal plane trunk control during anterior cruciate ligament injury. Am J Sports Med. doi:10.1177/0363546512437850 PubMedGoogle Scholar
  28. 28.
    Shimokochi Y, Meyer E (2011) Sagittal plane body positions influence tibial anterior shear force during single-leg landing. Br J Sports Med 45(4):373CrossRefGoogle Scholar
  29. 29.
    Shimokochi Y, Shultz SJ (2008) Mechanisms of noncontact anterior cruciate ligament injury. J Athl Train 43(4):396–408PubMedCrossRefGoogle Scholar
  30. 30.
    Shimokochi Y, Yong Lee S, Shultz SJ, Schmitz RJ (2009) The relationships among sagittal-plane lower extremity moments: implications for landing strategy in anterior cruciate ligament injury prevention. J Athl Train 44(1):33–38PubMedCrossRefGoogle Scholar
  31. 31.
    Shultz SJ, Schmitz RJ (2009) Effects of transverse and frontal plane knee laxity on hip and knee neuromechanics during drop landings. Am J Sports Med 37(9):1821–1830PubMedCrossRefGoogle Scholar
  32. 32.
    Solomonow M, Baratta R, Zhou BH, Shoji H, Bose W, Beck C, D’Ambrosia R (1987) The synergistic action of the anterior cruciate ligament and thigh muscles in maintaining joint stability. Am J Sports Med 15(3):207–213PubMedCrossRefGoogle Scholar
  33. 33.
    Tokuyama M, Ohashi H, Iwamoto H, Takaoka K, Okubo M (2005) Individuality and reproducibility in high-speed motion of volleyball spike jumps by phase-matching and averaging. J Biomech 38(10):2050–2057PubMedCrossRefGoogle Scholar
  34. 34.
    Wall SJ, Rose DM, Sutter EG, Belkoff SM, Boden BP (2012) The role of axial compressive and quadriceps forces in noncontact anterior cruciate ligament injury: a cadaveric study. Am J Sports Med 40(3):568–573PubMedCrossRefGoogle Scholar
  35. 35.
    Winter DA (2009) Biomechanics and motor control of human movement, 4th edn. Wiley, New YorkCrossRefGoogle Scholar
  36. 36.
    Zazulak BT, Hewett TE, Reeves NP, Goldberg B, Cholewicki J (2007) Deficits in neuromuscular control of the trunk predict knee injury risk: a prospective biomechanical-epidemiologic study. Am J Sports Med 35(7):1123–1130PubMedCrossRefGoogle Scholar
  37. 37.
    Zazulak BT, Hewett TE, Reeves NP, Goldberg B, Cholewicki J (2007) The effects of core proprioception on knee injury: a prospective biomechanical-epidemiological study. Am J Sports Med 35(3):368–373PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Yohei Shimokochi
    • 1
  • Jatin P. Ambegaonkar
    • 2
  • Eric G. Meyer
    • 3
  • Sae Yong Lee
    • 4
  • Sandra J. Shultz
    • 5
  1. 1.Sports Medicine Research Laboratory, Department of Health and Sport Management, School of Health and Sport SciencesOsaka University of Health and Sport SciencesSennan-gunJapan
  2. 2.Sports Medicine Assessment Research and Testing LaboratoryGeorge Mason UniversityManassasUSA
  3. 3.Experimental Biomechanics Laboratory, Biomedical EngineeringLawrence Technological UniversitySouthfieldUSA
  4. 4.Department of Physical EducationYonsei UniversitySeoulKorea
  5. 5.Applied Neuromechanics Research Laboratory, Department of Kinesiology, School of Health and Human SciencesUniversity of North Carolina at GreensboroGreensboroUSA

Personalised recommendations