Skip to main content
Log in

Size comparison of ACL footprint and reconstructed auto graft

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The purpose of this study was to compare the size of native anterior cruciate ligament (ACL) footprints and the size of commonly used auto grafts. The hypothesis was that the reconstructed graft size with auto grafts might be smaller than the native ACL footprint.

Methods

Fourteen non-paired human cadaver knees were used. The semitendinosus tendon (ST) and the gracilis (G) tendon were harvested and prepared for ACL grafts. Simulating an ST graft, the ST was cut in half. The bigger half was regarded as the antero-medial (AM) bundle, and the remaining half was regarded as the postero-lateral (PL) bundle. Simulating an ST–G graft, the bigger half of the ST and G were regarded as the AM bundle, and the smaller half of the ST was regarded as the PL bundle. Each graft diameter was measured, and the graft area was calculated. Simulating a rectangular bone-patella tendon-bone (BPTB) graft, a 10-mm wide BPTB graft was harvested and the area calculated. The ACL was carefully dissected, and the size of the femoral and tibial footprints was measured using Image J software (National Institution of Health).

Results

The average areas of the ST, ST–G, and BPTB graft were 52.3 ± 7.3, 64.4 ± 9.2, and 32.7 ± 6.5 mm2, respectively. The sizes of the native femoral and tibial ACL footprints were 85.4 ± 26.3 and 145.4 ± 39.8 mm2, respectively. Only the ST–G graft showed no significant difference in graft size when compared with the femoral ACL footprint.

Conclusion

Only the ST–G auto graft was able to reproduce the native size of the ACL footprint on the femoral side. None of the auto grafts could reproduce the size of the tibial ACL footprint. For clinical relevance, ST–G graft is recommended in order to reproduce the native size of the ACL in anatomical ACL reconstruction with auto graft.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ACL:

Anterior cruciate ligament

AM:

Antero-medial bundle

BPTB:

Bone-patella tendon-bone

G:

Gracilis

PL:

Postero-lateral bundle

ST:

Semitendinosus

References

  1. Bedi A, Maak T, Musahl V et al (2011) Effect of tunnel position and graft size in single-bundle anterior cruciate ligament reconstruction: an evaluation of time-zero knee stability. Arthroscopy 27:1543–1551

    Article  PubMed  Google Scholar 

  2. Brophy RH, Selby RM, Altchek DW (2006) Anterior cruciate ligament revision: double-bundle augmentation of primary vertical graft. Arthroscopy 22(683):e1–e5

    PubMed  Google Scholar 

  3. Darcy SP, Kilger RH, Woo SL, Debski RF (2006) Estimation of ACL forces by reproducing knee kinematics between sets of knees: a novel noninvasive methodology. J Biomech 39:2371–2377

    Article  PubMed  Google Scholar 

  4. Dargel J, Pohl P, Tzikaras P et al (2006) Morphometric side-to side differences in human cruciate ligament insertions. Surg Radiol Anat 28:398–402

    Article  PubMed  Google Scholar 

  5. Ferretti M, Ekdahl M, Shen W, Fu FH (2007) Osseous landmarks of the femoral attachment of the anterior cruciate ligament: an anatomic study. Arthroscopy 23:1218–1225

    Article  PubMed  Google Scholar 

  6. Fu FH (2011) Double-bundle ACL reconstruction. Orthopedics 34:281–283

    Article  PubMed  Google Scholar 

  7. Hara K, Mochizuki T, Sekiya I, Yamaguchi K, Akita K, Muneta T (2009) Anatomy of normal human anterior cruciate ligament attachments evaluated by divided small bundles. Am J Sports Med 37:2386–2391

    Article  PubMed  Google Scholar 

  8. Harner CD, Baek GH, Vogrin TM et al (1999) Quantitative analysis of human cruciate ligament insertions. Arthroscopy 15:741–749

    Article  PubMed  CAS  Google Scholar 

  9. Iriuchishima T, Tajima G, Ingham SJ et al (2009) Intercondylar roof impingement pressure after anterior cruciate ligament reconstruction in a porcine model. Knee Surg Sports Traumatol Arthrosc 17:590–594

    Article  PubMed  Google Scholar 

  10. Iriuchishima T, Tajima G, Shirakura K et al (2011) In vitro and in vivo AM and PL tunnel positioning in anatomical double bundle anterior cruciate ligament reconstruction. Arch Orthop Trauma Surg 131:1085–1090

    Article  PubMed  Google Scholar 

  11. Iriuchishima T, Ingham SJ, Tajima G et al (2010) Evaluation of the tunnel placement in the anatomical double-bundle ACL reconstruction: a cadaver study. Knee Surg Sports Traumatol Arthrosc 18:1226–1231

    Article  PubMed  Google Scholar 

  12. Iriuchishima T, Tajima G, Ingham SJ, Shen W, Smolinski P, Fu FH (2010) Impingement pressure in the anatomical and non anatomical anterior cruciate ligament reconstruction: a cadaver study. Am J Sports Med 38:1611–1617

    Article  PubMed  Google Scholar 

  13. Iriuchishima T, Horaguchi T, Kubomura T, Morimoto Y, Fu FH (2011) Evaluation of the intercondylar roof impingement after anatomical double-bundle anterior cruciate ligament reconstruction using 3D-CT. Knee Surg Sports Traumatol Arthrosc 19:674–679

    Article  PubMed  Google Scholar 

  14. Karlsson J, Irrgang JJ, van Eck CF, Samuelsson K, Mejia HA, Fu FH (2011) Anatomic single- and double-bundle anterior cruciate ligament reconstruction. Part 2: clinical application of surgical technique. Am J Sports Med 39:2016–2026

    Article  PubMed  Google Scholar 

  15. Kondo E, Yasuda K, Azuma H, Tanabe Y, Yagi T (2008) Prospective clinical comparisons of anatomic double-bundle versus single-bundle anterior cruciate ligament reconstruction procedures in 328 consecutive patients. Am J Sports Med 36:1675–1687

    Article  PubMed  Google Scholar 

  16. Kopf S, Musahl V, Tashman S, Szczodry M, Shen W, Fu FH (2009) A systematic review of the femoral origin and tibial insertion morphology of the ACL. Knee Surg Sports Traumatol Arthrosc 17:213–219

    Article  PubMed  Google Scholar 

  17. Kopf S, Pombo MW, Szczodry M, Irrgang JJ, Fu FH (2011) Size variability of the human anterior cruciate ligament insertion sites. Am J Sports Med 39:108–1013

    Article  PubMed  Google Scholar 

  18. Loh JC, Fukuda Y, Tsuda E, Steadman RJ, Fu FH, Woo SL (2003) Knee stability and graft function following anterior cruciate ligament reconstruction: comparison between 11 o’clock and 10 o’clock femoral tunnel placement. Arthroscopy 19:297–304

    Article  PubMed  Google Scholar 

  19. Luites JW, Wymenga AB, Blankevoort L et al (2007) Description of the attachment geometry of the anteromedial and posterolateral bundles of the ACL from arthroscopic perspective for anatomical tunnel placement. Knee Surg Sports Traumatol Arthrosc 15:1422–1431

    Article  PubMed  Google Scholar 

  20. Maeyama A, Hoshino Y, Debandi A et al (2011) Evaluation of rotational instability in the anterior cruciate ligament deficient knee using triaxial accelerometer: a biomechanical model in porcine knees. Knee Surg Sports Traumatol Arthrosc 19:1233–1238

    Article  PubMed  Google Scholar 

  21. Muneta T, Koga H, Mochizuki T et al (2007) A prospective randomized study of 4-strand semitendinosus tendon anterior cruciate ligament reconstruction comparing single-bundle and double bundle techniques. Arthroscopy 23:618–628

    Article  PubMed  Google Scholar 

  22. Muneta T, Takakuda K, Yamamoto H (1997) Intercondylar notch width and its relation to the configuration and cross-sectional area of the anterior cruciate ligament. A cadaveric knee study. Am J Sports Med 25:69–72

    Article  PubMed  CAS  Google Scholar 

  23. Niki Y, Matsumoto H, Hakozaki A, Kanagawa H, Toyama Y, Suda Y (2011) Anatomic double-bundle anterior cruciate ligament reconstruction using bone-patellar tendon-bone and gracilis tendon graft: a comparative study with 2-year follow-up results of semitendinosus tendon grafts alone or semitendinosus-gracilis tendon grafts. Arthroscopy 27:1242–1251

    Article  PubMed  Google Scholar 

  24. Okada E, Matsumoto M, Ichihara D et al (2011) Cross-sectional area of posterior extensor muscles of the cervical spine in asymptomatic subjects: a 10-year longitudinal magnetic resonance imaging study. Eur Spine J 20:1567–1573

    Article  PubMed  Google Scholar 

  25. Shin SH, Jeon IH, Kim HJ et al (2010) Articular surface area of the coronoid process and radial head in elbow extension: surface ration in cadavers and a computed tomography in vivo. J Hand Surg Am 35:1120–1125

    Article  PubMed  Google Scholar 

  26. Shino K, Nakata K, Nakamura N et al (2008) Rectangular tunnel double-bundle anterior cruciate ligament reconstruction with bone-patellar tendon-bone graft to mimic natural fiber arrangement. Arthroscopy 24:1178–1183

    Article  PubMed  Google Scholar 

  27. Siebold R, Ellert T, Metz S et al (2008) Femoral insertions of the anteromedial and posterolateral bundles of the anterior cruciate ligament: morphometry and arthroscopic orientation models for double-bundle bone tunnel placement-a cadaver study. Arthroscopy 24:585–592

    Article  PubMed  Google Scholar 

  28. Siebold R, Ellert T, Metz S et al (2008) Tibial insertions of the anteromedial and posterolateral bundles of the anterior cruciate ligament: morphometry, arthroscopic landmarks, and orientation model for bone tunnel placement. Arthroscopy 24:154–161

    Article  PubMed  Google Scholar 

  29. Steiner ME, Murray MM, Rodeo SA (2008) Strategies to improve anterior cruciate ligament healing and graft placement. Am J Sports Med 36:176–189

    Article  PubMed  Google Scholar 

  30. Takahashi M, Doi M, Abe M et al (2006) Anatomical study of the femoral and tibial insertions of the anteromedial and posterolateral bundles of human anterior cruciate ligament. Am J Sports Med 34:787–792

    Article  PubMed  Google Scholar 

  31. Tompkins M, Ma R, Hogan MV, Miller MD (2011) What’s new in sports medicine. J Bone Joint Surg Am 93:789–797

    Article  PubMed  Google Scholar 

  32. Yagi M, Wong EK, Kanamori A, Debski RE, Fu FH, Woo SL (2002) Biomechanical analysis of anatomic anterior cruciate ligament reconstruction. Am J Sports Med 30:660–666

    PubMed  Google Scholar 

  33. Yasuda K, Kondo E, Ichiyama H, Tanabe Y, Tohyama H (2006) Clinical evaluation of anatomic double-bundle anterior cruciate ligament reconstruction procedure using hamstring tendon grafts: comparisons among 3 different procedures. Arthroscopy 22:240–251

    Article  PubMed  Google Scholar 

  34. Yasuda K, van Eck CF, Hoshino Y, Fu FH, Tashman S (2011) Anatomic single- and double-bundle anterior cruciate ligament reconstruction. Part 1: basic science. Am J Sports Med 39:1789–1799

    Article  PubMed  Google Scholar 

  35. Zantop T, Wellmann M, Fu FH, Peterson W (2008) Tunnel positioning of anteromedial and posterolateral bundles in anatomic anterior cruciate ligament reconstruction: anatomic and radiographic findings. Am J Sports Med 36:65–72

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takanori Iriuchishima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iriuchishima, T., Shirakura, K., Yorifuji, H. et al. Size comparison of ACL footprint and reconstructed auto graft. Knee Surg Sports Traumatol Arthrosc 21, 797–803 (2013). https://doi.org/10.1007/s00167-012-1949-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-012-1949-y

Keywords

Navigation