Skip to main content
Log in

Objective measurement devices to assess static rotational knee laxity: focus on the Rotameter

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The present article summarizes the development of a simple, objective, and non-invasive measurement device for tibiofemoral rotation to assess static rotational knee laxity.

Methods and results

The device is based on the dial test with the patient lying prone and the knee flexed to 30°. From measurements of 30 healthy participants, the device achieved high inter- and intra-observer reliability and showed a high correlation of the measured results with the contralateral knees of the participants. Measurements of the device were also performed in a human cadaver study and revealed highly correlated results when compared to the simultaneous measurements of a knee navigation system, which was used as an invasive standard method to assess tibial rotation. In human cadaver specimens, it was shown that a simulated tear of the posterolateral bundle as well as a complete ACL tear led to a significant increase in isolated tibiofemoral rotation compared to the intact ACL. A retrospective case series investigated the clinical results as well as knee laxity measurements after ACL surgery in vivo. Rotational, as well as anteroposterior (AP), knee laxity was objectively assessed in 52 patients at a mean postoperative follow-up of 27 months by comparing the measured results with the results of the contralateral unaffected knee in each patient. The clinical results were comparable to the results reported in the literature. Moreover, rotational laxity was successfully restored after ACL reconstruction, whereas AP laxity showed significant differences compared to the contralateral knees although they were defined as clinically successful according to the IKDC classification.

Conclusions

A non-invasive and objective knee rotational measurement device has been developed, which offers good potential for objective quality control in knee ligament injuries and their treatment.

Level of evidence

Review article, Level IV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Almquist PO, Arnbjörnsson A, Zätterström R, Ryd L, Ekdahl C, Fridén T (2002) Evaluation of an external device measuring knee joint rotation: an in vivo study with simultaneous Roentgen stereometric analysis. J Orthop Res 2002(20):427–432

    Article  Google Scholar 

  2. Andersen HN, Dyhre-Poulsen P (1997) The anterior cruciate ligament does play a role in controlling axial rotation in the knee. Knee Surg Sports Traumatol Arthrosc 5:145–149

    Article  PubMed  CAS  Google Scholar 

  3. Beighton P, Solomon L, Soskolne CL (1973) Articular mobility in an African population. Ann Rheum Dis 32:413–418

    Article  PubMed  CAS  Google Scholar 

  4. Bignozzi S, Zaffagnini S, Lopomo N, Fu FH, Irrgang JJ, Marcacci M (2010) Clinical relevance of static and dynamic tests after anatomical double-bundle ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 18:37–42

    Article  PubMed  Google Scholar 

  5. Boyer P, Djian P, Christel P, Paoletti X, Degeorges R (2004) Reliability of the KT-1000 arthrometer (Medmetric) for measuring anterior knee laxity: comparison with Telos in 147 knees. Rev Chir Orthop Reparatrice Appar Mot 90:757–764

    Article  PubMed  CAS  Google Scholar 

  6. Colombet P, Robinson J, Christel P, Franceschi JP, Djian P (2007) Using navigation to measure rotation kinematics during ACL reconstruction. Clin Orthop Relat Res 454:59–65

    Article  PubMed  Google Scholar 

  7. Daniel DM, Malcom LL, Losse G, Stone ML, Sachs R, Burks R (1985) Instrumented measurement of anterior laxity of the knee. J Bone Joint Surg Am 67:720–726

    PubMed  CAS  Google Scholar 

  8. Daniel DM, Stone ML, Dobson BE, Fithian DC, Rossman DJ, Kaufman KR (1994) Fate of the ACL-injured patient. A prospective outcome study. Am J Sports Med 22:632–644

    Article  PubMed  CAS  Google Scholar 

  9. Forster IW, Warren-Smith CD, Tew M (1989) Is the KT 1000 knee ligament arthrometer reliable? J Bone Joint Surg Br 71:843–847

    PubMed  CAS  Google Scholar 

  10. Georgoulis AD, Ristanis S, Chouliaras V, Moraiti C, Stergiou N (2007) Tibial rotation is not restored after ACL reconstruction with a hamstring graft. Clin Orthop Relat Res 454:89–94

    Article  PubMed  Google Scholar 

  11. Hoshino Y, Kuroda R, Nagamune K, Araki D, Kubo S, Yamaguchi M, Kurosaka M (2011) Optimal measurement of clinical rotational test for evaluating anterior cruciate ligament insufficiency. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-011-1643-5

  12. Järvelä T (2007) Double-bundle versus single-bundle anterior cruciate ligament reconstruction: a prospective, randomize clinical study. Knee Surg Sports Traumatol Arthrosc 15:500–507

    Article  PubMed  Google Scholar 

  13. Jonsson H, Riklund-Ahlstrom K, Lind J (2004) Positive pivot shift after ACL reconstruction predicts later osteoarthrosis: 63 patients followed 5–9 years after surgery. Acta Orthop Scand 75:594–599

    Article  PubMed  Google Scholar 

  14. Lane JG, Irby SE, Kaufman K, Rangger C, Daniel DM (1994) The anterior cruciate ligament in controlling axial rotation. An evaluation of its effect. Am J Sports Med 22:289–293

    Article  PubMed  CAS  Google Scholar 

  15. Lorbach O, Pape D, Maas S, Zerbe T, Kohn D, Busch L, Seil R (2010) The Influence of the anteromedial and posterolateral bundles of the anterior cruciate ligament on external and internal tibiofemoral rotation. Am J Sports Med 38:721–727

    Article  PubMed  Google Scholar 

  16. Lorbach O, Kieb M, Brogard P, Maas S, Pape D, Seil R (2011) Static rotational and sagittal knee laxity measurements after reconstruction of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc. doi:10/1007/s00167-011-1635-5

  17. Lorbach O, Wilmes P, Maas S, Zerbe T, Busch L, Kohn D, Seil R (2009) A non-invasive device to objectively measure tibial rotation: verification of the device. Knee Surg Sports Traumatol Arthrosc 17:756–762

    Article  PubMed  Google Scholar 

  18. Lorbach O, Wilmes P, Theisen D, Brockmeyer M, Maas S, Kohn D, Seil R (2009) Reliability testing of a new device to measure tibial rotation. Knee Surg Sports Traumatol Arthrosc 17:920–926

    Article  PubMed  Google Scholar 

  19. Muneta T, Koga H, Mochizuki T, Ju YJ, Hara K, Nimura A, Yagishita K, Sekiya I (2007) A prospective randomized study of 4-strand semitendinosus tendon anterior cruciate ligament reconstruction comparing single-bundle and double-bundle techniques. Arthroscopy 23:618–628

    Article  PubMed  Google Scholar 

  20. Musahl V, Bell KM, Tsai AG, Costic RS, Allaire R, Zantop T, Irrgang JJ, Fu FH (2007) Development of a simple device for measurement of rotational knee laxity. Knee Surg Sports Traumatol Arthrosc 15:1009–1012

    Article  PubMed  Google Scholar 

  21. Noyes FR, Grood ES, Cummings JF, Wroble RR (1991) An analysis of the pivot shift phenomenon. The knee motions and subluxations induced by different examiners. Am J Sports Med 19:148–155

    Article  PubMed  CAS  Google Scholar 

  22. Robert H, Nouveau S, Gageot S, Gagniere B (2009) A new knee arthrometer, the GNRB: experience in ACL complete and partial tears. Orthop Traumatol Surg Res 95:171–176

    Article  PubMed  CAS  Google Scholar 

  23. Schuster AJ, McNicholas MJ, Wachtl SW, McGurty DW, Jakob RW (2004) A new mechanical testing device for measuring anteroposterior knee laxity. Am J Sports Med 32:1731–1735

    Article  PubMed  Google Scholar 

  24. Shoemaker SC, Markolf KL (1982) In vivo rotatory knee stability. Ligamentous and muscular contributions. J Bone Joint Surg Am 64:208–216

    PubMed  CAS  Google Scholar 

  25. Shultz SJ, Shimokochi Y, Nguyen AD, Schmitz RJ, Beynnon BD, Perrin DH (2007) Measurement of varus-valgus and internal-external rotational knee laxities in vivo—part I: assessment of measurement reliability and bilateral asymmetry. J Orthop Res 25:981–988

    Article  PubMed  Google Scholar 

  26. Steckel H, Murtha PE, Costic RS, Moody JE, Jaramaz B, Fu FH (2007) Computer evaluation of kinematics of anterior cruciate ligament reconstructions. Clin Orthop Relat Res 463:37–42

    PubMed  Google Scholar 

  27. Tashman S, Collon D, Anderson K, Kolowich P, Anderst W (2004) Abnormal rotational knee motion during running after anterior cruciate ligament reconstruction. Am J Sports Med 32:975–983

    Article  PubMed  Google Scholar 

  28. Woo SL, Kanamori A, Zeminski J, Yagi M, Papageorgiou C, Fu FH (2002) The effectiveness of reconstruction of the anterior cruciate ligament with hamstrings and patellar tendon. A cadaveric study comparing anterior tibial and rotational loads. J Bone Joint Surg Am 84:907–914

    PubMed  Google Scholar 

  29. Yagi M, Kuroda R, Nagamune K, Yoshiya S, Kurosaka M (2007) Double-bundle ACL reconstruction can improve rotational stability. Clin Orthop Relat Res 454:100–107

    Article  PubMed  Google Scholar 

  30. Zarins B, Rowe CR, Harris BA, Watkins MP (1983) Rotational motion of the knee. Am J Sports Med 11:152–156

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Lorbach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorbach, O., Brockmeyer, M., Kieb, M. et al. Objective measurement devices to assess static rotational knee laxity: focus on the Rotameter. Knee Surg Sports Traumatol Arthrosc 20, 639–644 (2012). https://doi.org/10.1007/s00167-011-1876-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-011-1876-3

Keywords

Navigation