The KneeKG system: a review of the literature

  • Sébastien LustigEmail author
  • Robert A. Magnussen
  • Laurence Cheze
  • Philippe Neyret



Accurately quantifying knee joint motion is not simple. Skin movement over the medial and lateral femoral condyles is the greatest obstacle to obtaining accurate movement data non-invasively. The KneeKG™ system was developed with the objective of providing high reliability movement analysis. The goal of this manuscript is to review the technical details, clinical evidence, and potential applications of this system for evaluation of rotational knee laxity.


A comprehensive review of the MEDLINE database was carried out to identify all clinical and biomechanical studies related to KneeKG™ system.


The KneeKG™ system non-invasively quantifies knee abduction/adduction, axial rotation, and relative translation of the tibia and femur. The accuracy and reproducibility of the system have been assessed. The average accuracy of the acquisition is 0.4° for abduction/adduction, 2.3° for axial rotation, 2.4 mm for anteroposterior translation, and 1.1 mm for axial translation. This clinical tool enables an accurate and objective assessment of the tri-planar function of the knee joint. The measured biomechanical parameters are sensitive to changes in gait due to knee osteoarthritis and ACL deficiency.


The KneeKG™ system provides reliable movement analysis. This system has the potential to improve understanding the biomechanical consequences of trauma or degenerative changes of the knee as well as more accurately quantify rotational laxity as detected by a positive pivot-shift test.


Knee Movement analysis KneeKG Rotational laxity 


  1. 1.
    Arneja S, Leith J (2009) Review article: Validity of the KT-1000 knee ligament arthrometer. J Orthop Surg (Hong Kong) 17:77–79Google Scholar
  2. 2.
    Balasch H, Schiller M, Friebel H, Hoffmann F (1999) Evaluation of anterior knee joint instability with the Rolimeter. A test in comparison with manual assessment and measuring with the KT-1000 arthrometer. Knee Surg Sports Traumatol Arthrosc 7:204–208PubMedCrossRefGoogle Scholar
  3. 3.
    Branch TP, Browne JE, Campbell JD, Siebold R, Freedberg HI, Arendt EA, Lavoie F, Neyret P, Jacobs CA (2010) Rotational laxity greater in patients with contralateral anterior cruciate ligament injury than healthy volunteers. Knee Surg Sports Traumatol Arthrosc 18:1379–1384PubMedCrossRefGoogle Scholar
  4. 4.
    Fuentes A, Hagemeister N, Ranger P, Heron T, de Guise JA (2011) Gait adaptation in chronic anterior cruciate ligament-deficient patients: Pivot-shift avoidance gait. Clin Biomech (Bristol, Avon) 26:181–187CrossRefGoogle Scholar
  5. 5.
    Fuentes AH HI, Sudhoff I, Fernandes J, Ranger P, de Guise JA (2007) New 3D biomechanical and imaging technologies to evaluate the effect of anterior cruciate ligament reconstructions: preliminary results. Clin J Sport Med 17:165Google Scholar
  6. 6.
    Ganjikia S, Duval N, Yahia L, de Guise J (2000) Three-dimensional knee analyzer validation by simple fluoroscopic study. Knee 7:221–231PubMedCrossRefGoogle Scholar
  7. 7.
    Ganko A, Engebretsen L, Ozer H (2000) The rolimeter: a new arthrometer compared with the KT-1000. Knee Surg Sports Traumatol Arthrosc 8:36–39PubMedCrossRefGoogle Scholar
  8. 8.
    Goujon H, Bonnet X, Sautreuil P, Maurisset M, Darmon L, Fode P, Lavaste F (2006) A functional evaluation of prosthetic foot kinematics during lower-limb amputee gait. Prosthet Orthot Int 30:213–223PubMedCrossRefGoogle Scholar
  9. 9.
    Hagemeister N, Yahia L’H, Duval N, de Guise J (1999) In vivo reproducibility of a new non-invasive diagnostic tool for the three dimensional knee evaluation. Knee 6:175–181Google Scholar
  10. 10.
    Hagemeister N, Parent G, Van de Putte M, St-Onge N, Duval N, de Guise J (2005) A reproducible method for studying three-dimensional knee kinematics. J Biomech 38:1926–1931PubMedCrossRefGoogle Scholar
  11. 11.
    Hoshino Y, Kuroda R, Nagamune K, Araki D, Kubo S, Yamaguchi M, Kurosaka M (2011) Optimal measurement of clinical rotational test for evaluating anterior cruciate ligament insufficiency. Knee Surg Sports Traumatol Arthrosc. doi: 10.1007/s00167-011-1643-5
  12. 12.
    Hoshino Y, Tashman S (2011) Internal tibial rotation during in vivo, dynamic activity induces greater sliding of tibio-femoral joint contact on the medial compartment. Knee Surg Sports Traumatol Arthrosc. doi: 10.1007/s00167-011-1731-6
  13. 13.
    Kowalk DL, Wojtys EM, Disher J, Loubert P (1993) Quantitative analysis of the measuring capabilities of the KT-1000 knee ligament arthrometer. Am J Sports Med 21:744–747PubMedCrossRefGoogle Scholar
  14. 14.
    Labbe DR, de Guise JA, Godbout V, Grimard G, Baillargeon D, Lavigne P, Fernandes J, Masse V, Ranger P, Hagemeister N (2011) Accounting for velocity of the pivot shift test manoeuvre decreases kinematic variability. Knee 18:88–93PubMedCrossRefGoogle Scholar
  15. 15.
    Labbe DR, de Guise JA, Mezghani N, Godbout V, Grimard G, Baillargeon D, Lavigne P, Fernandes J, Ranger P, Hagemeister N (2010) Feature selection using a principal component analysis of the kinematics of the pivot shift phenomenon. J Biomech 43:3080–3084PubMedCrossRefGoogle Scholar
  16. 16.
    Labbe DR, de Guise JA, Mezghani N, Godbout V, Grimard G, Baillargeon D, Lavigne P, Fernandes J, Ranger P, Hagemeister N (2011) Objective grading of the pivot shift phenomenon using a support vector machine approach. J Biomech 44:1–5PubMedCrossRefGoogle Scholar
  17. 17.
    Labbe DR, Hagemeister N, Tremblay M, de Guise J (2008) Reliability of a method for analyzing three-dimensional knee kinematics during gait. Gait Posture 28:170–174PubMedCrossRefGoogle Scholar
  18. 18.
    Lopomo N, Zaffagnini S, Signorelli C, Bignozzi S, Giordano G, Marcheggiani Muccioli GM, Visani A (2011) An original clinical methodology for non-invasive assessment of pivot-shift test. Comput Methods Biomech Biomed Engin. doi: 10.1080/10255842.2011.591788
  19. 19.
    Lorbach O, Kieb M, Brogard P, Maas S, Pape D, Seil R (2011) Static rotational and sagittal knee laxity measurements after reconstruction of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc. doi: 10.1007/s00167-011-1635-5
  20. 20.
    Marin F, Allain J, Diop A, Maurel N, Simondi M, Lavaste F (1999) On the estimation of knee joint kinematics. Hum Move Sci 18:613–626CrossRefGoogle Scholar
  21. 21.
    Matsas A, Taylor N, McBurney H (2000) Knee joint kinematics from familiarised treadmill walking can be generalised to overground walking in young unimpaired subjects. Gait & posture 11:46–53CrossRefGoogle Scholar
  22. 22.
    Noyes FR, Grood ES, Cummings JF, Wroble RR (1991) An analysis of the pivot shift phenomenon. The knee motions and subluxations induced by different examiners. Am J Sports Med 19:148–155PubMedCrossRefGoogle Scholar
  23. 23.
    Rangger C, Daniel DM, Stone ML, Kaufman K (1993) Diagnosis of an ACL disruption with KT-1000 arthrometer measurements. Knee Surg Sports Traumatol Arthrosc 1:60–66PubMedCrossRefGoogle Scholar
  24. 24.
    Sati M, de Guise JA, Drouin G (1997) Computer assisted knee surgery: diagnostics and planning of knee surgery. Comput Aided Surg 2:108–123PubMedCrossRefGoogle Scholar
  25. 25.
    Sati MdG JA, Larouche S (1996) Improving in vivo knee kinematic measurements: application to prosthetic ligament analysis. Knee 3:179–190CrossRefGoogle Scholar
  26. 26.
    Sati MdG JA, Larouche S (1996) Quantitative assessment of skin-bone movement at the knee. Knee 3:179–190CrossRefGoogle Scholar
  27. 27.
    Saveh AH, Katouzian HR, Chizari M (2011) Measurement of an intact knee kinematics using gait and fluoroscopic analysis. Knee Surg Sports Traumatol Arthrosc 19:267–272PubMedCrossRefGoogle Scholar
  28. 28.
    Sell TC, Ferris CM, Abt JP, Tsai YS, Myers JB, Fu FH, Lephart SM (2006) The effect of direction and reaction on the neuromuscular and biomechanical characteristics of the knee during tasks that simulate the noncontact anterior cruciate ligament injury mechanism. Am J Sports Med 34:43–54PubMedCrossRefGoogle Scholar
  29. 29.
    Simon SR (2004) Quantification of human motion: gait analysis-benefits and limitations to its application to clinical problems. J Biomech 37:1869–1880PubMedCrossRefGoogle Scholar
  30. 30.
    St-Onge N, Chevalier Y, Hagemeister N, Van De Putte M, De Guise J (2004) Effect of ski binding parameters on knee biomechanics: a three-dimensional computational study. Med Sci Sports Exerc 36:1218–1225PubMedCrossRefGoogle Scholar
  31. 31.
    Sudhoff I, Van Driessche S, Laporte S, de Guise JA, Skalli W (2007) Comparing three attachment systems used to determine knee kinematics during gait. Gait & posture 25:533–543CrossRefGoogle Scholar
  32. 32.
    Turcot K, Aissaoui R, Boivin K, Pelletier M, Hagemeister N, de Guise JA (2008) New accelerometric method to discriminate between asymptomatic subjects and patients with medial knee osteoarthritis during 3-d gait. IEEE Trans Biomed Eng 55:1415–1422PubMedCrossRefGoogle Scholar
  33. 33.
    Turcot K, Aissaoui R, Boivin K, Pelletier M, Hagemeister N, de Guise JA (2009) The responsiveness of three-dimensional knee accelerations used as an estimation of knee instability and loading transmission during gait in osteoarthritis patient’s follow-up. Osteoarthr Cartil 17:213–219PubMedCrossRefGoogle Scholar
  34. 34.
    Turcot K, Hagemeister N, de Guise JA, Aissaoui R (2011) Evaluation of unipodal stance in knee osteoarthritis patients using knee accelerations and center of pressure. Osteoarthr Cartil 19:281–286PubMedCrossRefGoogle Scholar
  35. 35.
    Van de Putte M, Hagemeister N, St-Onge N, Parent G, de Guise JA (2006) Habituation to treadmill walking. Biomed Mater Eng 16:43–52PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Sébastien Lustig
    • 1
    • 3
    Email author
  • Robert A. Magnussen
    • 2
  • Laurence Cheze
    • 3
  • Philippe Neyret
    • 1
    • 3
  1. 1.Department of Orthopaedic SurgeryHôpital de la Croix-RousseLyonFrance
  2. 2.Department of Orthopaedic SurgeryThe Ohio State University School of MedicineColumbusUSA
  3. 3.UMR_T9406, Laboratoire de Biomécanique et Mécanique des ChocsUniversité de LyonLyonFrance

Personalised recommendations