Clinical grading of the pivot shift test correlates best with tibial acceleration

  • Mattias AhldénEmail author
  • Paulo Araujo
  • Yuichi Hoshino
  • Kristian Samuelsson
  • Kellie K. Middleton
  • Kouki Nagamune
  • Jón Karlsson
  • Volker Musahl



Recently, different measurement systems have been developed to quantitatively measure the pivot shift in vivo. These systems lack validation and a large inter-examiner variability for the manually performed pivot shift test exists. The purpose of this study was to perform objective measurements of the pivot shift using three different measurement devices and to examine the correlation of the measurements with clinical grading of the pivot shift.


A cadaver knee on a whole lower body specimen was prepared to display a high-grade pivot shift. The pivot shift tests were performed three times by 12 blinded expert surgeons using their preferred technique. Simultaneous data samplings were recorded using three different measurement devices: (1) electromagnetic tracking system using bone-attached and skin-fixed sensors, respectively, (2) triaxial accelerometer system, and (3) simple image analysis. The surgeons graded the knee clinically using pivot shift grades I–III. Correlations were calculated using the Spearman’s rank correlation coefficient.


The expert surgeons average clinical grading was 2.3 (SD ± 0.5). Clinical grading displayed best correlation with the acceleration of reduction as measured by electromagnetic tracking system with bone-attached sensors (r = 0.67, P < 0.05). Similar correlation coefficient was found for the acceleration of reduction (r = 0.58, P = 0.05) and the “jerk” component of acceleration (r = 0.61, P < 0.05) measured by means of the triaxial accelerometer system.


The pivot shift can be quantified by several in vivo measurement devices. Best correlation with clinical grading was found with tibial acceleration parameters. Future studies will have to analyze how quantitative parameters can be utilized to standardize clinical grading of the pivot shift.

Level of evidence

Diagnostic study, Level II.


Knee Anterior cruciate ligament Pivot shift Laxity Kinematics 



The authors would like to sincerely thank the expert surgeons for their participation and inspiring comments during the study (Drs Roland Becker, Shiyi Chen, Moises Cohen, Andreas Imhoff, Timo Jarvela, Masahiro Kurosaka, Benjamin Ma, Willem van der Merwe, Philippe Neyret, Robert Smigielski, and Stefano Zaffagnini).


  1. 1.
    Bach BR, Warren RF, Wickiewicz TL (1988) The pivot shift phenomenon: results and description of a modified clinical test for anterior cruciate ligament insufficiency. Am J Sports Med 16(6):571–576PubMedCrossRefGoogle Scholar
  2. 2.
    Bedi A, Musahl V, Lane C, Citak M, Warren RF, Pearle AD (2010) Lateral compartment translation predicts the grade of pivot shift: a cadaveric and clinical analysis. Knee Surg Sports Traumatol Arthrosc 18(9):1269–1276PubMedCrossRefGoogle Scholar
  3. 3.
    Biau DJ, Katsahian S, Kartus J, Harilainen A, Feller JA, Sajovic M, Ejerhed L, Zaffagnini S, Ropke M, Nizard R (2009) Patellar tendon versus hamstring tendon autografts for reconstructing the anterior cruciate ligament: a meta-analysis based on individual patient data. Am J Sports Med 37(12):2470–2478PubMedCrossRefGoogle Scholar
  4. 4.
    Bull AMJ, Amis AA (1998) The pivot-shift phenomenon: a clinical and biomechanical perspective. Knee 5(3):141–158CrossRefGoogle Scholar
  5. 5.
    Grood ES, Suntay WJ (1983) A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng 105(2):136–144PubMedCrossRefGoogle Scholar
  6. 6.
    Hefti F, Müller W, Jakob RP, Stäubli HU (1993) Evaluation of knee ligament injuries with the IKDC form. Knee Surg Sports Traumatol Arthrosc 1(3–4):226–234PubMedCrossRefGoogle Scholar
  7. 7.
    Hoshino Y, Araujo P, Irrgang JJ, Fu FH, Musahl V (2011) An image analysis method to quantify the lateral pivot shift test. Knee Surg Sports Traumatol Arthrosc. doi: 10.1007/s00167-011-1845-x
  8. 8.
    Hoshino Y, Kuroda R, Nagamune K, Araki D, Kubo S, Yamaguchi M, Kurosaka M (2011) Optimal measurement of clinical rotational test for evaluating anterior cruciate ligament insufficiency. Knee Surg Sports Traumatol Arthrosc. doi: 10.1007/s00167-011-1643-5
  9. 9.
    Hoshino Y, Kuroda R, Nagamune K, Nishimoto K, Yagi M, Mizuno K, Yoshiya S, Kurosaka M (2007) The effect of graft tensioning in anatomic 2-bundle ACL reconstruction on knee joint kinematics. Knee Surg Sports Traumatol Arthrosc 15(5):508–514PubMedCrossRefGoogle Scholar
  10. 10.
    Hoshino Y, Kuroda R, Nagamune K, Yagi M, Mizuno K, Yamaguchi M, Muratsu H, Yoshiya S, Kurosaka M (2007) In vivo measurement of the pivot-shift test in the anterior cruciate ligament-deficient knee using an electromagnetic device. Am J Sports Med 35(7):1098–1104PubMedCrossRefGoogle Scholar
  11. 11.
    Jakob RP, Staubli HU, Deland JT (1987) Grading the pivot shift. Objective tests with implications for treatment. J Bone Joint Surg Br 69(2):294–299PubMedGoogle Scholar
  12. 12.
    Jarvela T, Moisala AS, Sihvonen R, Jarvela S, Kannus P, Jarvinen M (2008) Double-bundle anterior cruciate ligament reconstruction using hamstring autografts and bioabsorbable interference screw fixation: prospective, randomized, clinical study with 2-year results. Am J Sports Med 36(2):290–297PubMedCrossRefGoogle Scholar
  13. 13.
    Jonsson H, Riklund-Ahlstrom K, Lind J (2004) Positive pivot shift after ACL reconstruction predicts later osteoarthrosis: 63 patients followed 5–9 years after surgery. Acta Orthop Scand 75(5):594–599PubMedCrossRefGoogle Scholar
  14. 14.
    Kaplan N, Wickiewicz TL, Warren RF (1990) Primary surgical treatment of anterior cruciate ligament ruptures. A long-term follow-up study. Am J Sports Med 18(4):354–358PubMedCrossRefGoogle Scholar
  15. 15.
    Karlsson J, Irrgang JJ, van Eck CF, Samuelsson K, Mejia HA, Fu FH (2011) Anatomic single- and double-bundle anterior cruciate ligament reconstruction, part 2: clinical application of surgical technique. Am J Sports Med 39(9):2016–2026PubMedCrossRefGoogle Scholar
  16. 16.
    Kocher MS, Steadman JR, Briggs KK, Sterett WI, Hawkins RJ (2004) Relationships between objective assessment of ligament stability and subjective assessment of symptoms and function after anterior cruciate ligament reconstruction. Am J Sports Med 32(3):629–634PubMedCrossRefGoogle Scholar
  17. 17.
    Kuroda R, Hoshino Y, Kubo S, Araki D, Oka S, Nagamune K, Kurosaka M (2011) Similarities and differences of diagnostic manual tests for anterior cruciate ligament insufficiency: a global survey and kinematics assessment. Am J Sports Med. doi: 10.1177/0363546511423634
  18. 18.
    Labbe DR, de Guise JA, Mezghani N, Godbout V, Grimard G, Baillargeon D, Lavigne P, Fernandes J, Ranger P, Hagemeister N (2010) Feature selection using a principal component analysis of the kinematics of the pivot shift phenomenon. J Biomech 43(16):3080–3084PubMedCrossRefGoogle Scholar
  19. 19.
    Lane CG, Warren RF, Stanford FC, Kendoff D, Pearle AD (2008) In vivo analysis of the pivot shift phenomenon during computer navigated ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 16(5):487–492PubMedCrossRefGoogle Scholar
  20. 20.
    Lopomo N, Zaffagnini S, Bignozzi S, Visani A, Marcacci M (2010) Pivot-shift test: analysis and quantification of knee laxity parameters using a navigation system. J Orthop Res 28(2):164–169PubMedGoogle Scholar
  21. 21.
    Lopomo N, Zaffagnini S, Signorelli C, Bignozzi S, Giordano G, Marcheggiani Muccioli GM, Visani A (2011) An original clinical methodology for non-invasive assessment of pivot-shift test. Comput Methods Biomech Biomed Eng. doi: 10.1080/10255842.2011.591788
  22. 22.
    Musahl V, Voos J, O’Loughlin PF, Stueber V, Kendoff D, Pearle AD (2010) Mechanized pivot shift test achieves greater accuracy than manual pivot shift test. Knee Surg Sports Traumatol Arthros 18(9):1208–1213CrossRefGoogle Scholar
  23. 23.
    Noyes FR, Grood ES, Cummings JF, Wroble RR (1991) An analysis of the pivot shift phenomenon. The knee motions and subluxations induced by different examiners. Am J Sports Med 19(2):148–155PubMedCrossRefGoogle Scholar
  24. 24.
    Siebold R, Dehler C, Ellert T (2008) Prospective randomized comparison of double-bundle versus single-bundle anterior cruciate ligament reconstruction. Arthroscopy 24(2):137–145PubMedCrossRefGoogle Scholar
  25. 25.
    Yagi M, Kuroda R, Nagamune K, Yoshiya S, Kurosaka M (2007) Double-bundle ACL reconstruction can improve rotational stability. Clin Orthop Relat Res 454:100–107PubMedCrossRefGoogle Scholar
  26. 26.
    Yamamoto Y, Ishibashi Y, Tsuda E, Tsukada H, Maeda S, Toh S (2010) Comparison between clinical grading and navigation data of knee laxity in ACL-deficient knees. Sports Med Arthrosc Rehabil Ther Technol 2:27PubMedCrossRefGoogle Scholar
  27. 27.
    Yasuda K, van Eck CF, Hoshino Y, Fu FH, Tashman S (2011) Anatomic single- and double-bundle anterior cruciate ligament reconstruction, part 1: basic science. Am J Sports Med 39(8):1789–1799PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Mattias Ahldén
    • 1
    • 2
    Email author
  • Paulo Araujo
    • 2
  • Yuichi Hoshino
    • 2
  • Kristian Samuelsson
    • 1
  • Kellie K. Middleton
    • 2
  • Kouki Nagamune
    • 3
  • Jón Karlsson
    • 1
  • Volker Musahl
    • 2
  1. 1.Department of OrthopaedicsSahlgrenska University Hospital/MölndalMölndalSweden
  2. 2.Department of Orthopaedic SurgeryUniversity of PittsburghPittsburghUSA
  3. 3.Department of Human and Artificial Intelligent Systems, Graduate School of EngineeringUniversity of FukuiFukuiJapan

Personalised recommendations