Advertisement

Dynamic knee laxity measurement devices

  • Mattias AhldénEmail author
  • Yuichi Hoshino
  • Kristian Samuelsson
  • Paulo Araujo
  • Volker Musahl
  • Jón Karlsson
Knee

Abstract

Purpose

Studies have reported that knee kinematics and rotational laxity are not restored to native levels following traditional anterior cruciate ligament (ACL) reconstruction. This has led to the development of anatomic ACL reconstruction, which aims to restore native knee kinematics and long-term knee health by replicating normal anatomy as much as possible. The purpose of this review is to give an overview of current dynamic knee laxity measurement devices with the purpose of investigating the significance of dynamic laxity measurement of the knee. Gait analysis is not included.

Methods

The subject was discussed with experts in the field in order to perform a level V review. MEDLINE was searched according to the discussions for relevant articles using multiple different search terms. All found abstracts were read and scanned for relevance to the subject. The reference lists of the relevant articles were searched for additional articles related to the subject.

Results

There are a variety of techniques reported to measure dynamic laxity of the knee. Technical development of methods is one important part toward better understanding of knee kinematics. Validation of devices has shown to be difficult due to the lack of gold standard. Different studies use various methods to examine different components of dynamic laxity, which makes comparisons between studies challenging.

Conclusion

Several devices can be used to evaluate dynamic laxity of the knee. At the present time, the devices are continuously under development. Future implementation should include primary basic research, including validation and reliability testing, as well as part of individualized surgery and clinical follow-up.

Level of evidence

Diagnostic study, Level V.

Keywords

Knee Anterior cruciate ligament Pivot shift Laxity Devices Kinematics 

References

  1. 1.
    Abebe ES, Utturkar GM, Taylor DC, Spritzer CE, Kim JP, Moorman CT III, Garrett WE, DeFrate LE (2011) The effects of femoral graft placement on in vivo knee kinematics after anterior cruciate ligament reconstruction. J Biomech 44(5):924–929PubMedCrossRefGoogle Scholar
  2. 2.
    Ahlden M, Kartus J, Ejerhed L, Karlsson J, Sernert N (2009) Knee laxity measurements after anterior cruciate ligament reconstruction, using either bone-patellar-tendon-bone or hamstring tendon autografts, with special emphasis on comparison over time. Knee Surg Sports Traumatol Arthrosc 17(9):1117–1124PubMedCrossRefGoogle Scholar
  3. 3.
    Amis AA, Cuomo P, Rama RBS, Giron F, Bull AMJ, Thomas R, Aglietti P (2008) Measurement of knee laxity and pivot-shift kinematics with magnetic sensors. Oper Tech Orthop 18(3):196–203CrossRefGoogle Scholar
  4. 4.
    Anderst W, Zauel R, Bishop J, Demps E, Tashman S (2009) Validation of three-dimensional model-based tibio-femoral tracking during running. Med Eng Phys 31(1):10–16PubMedCrossRefGoogle Scholar
  5. 5.
    Anderst WJ, Tashman S (2009) The association between velocity of the center of closest proximity on subchondral bones and osteoarthritis progression. J Orthop Res 27(1):71–77PubMedCrossRefGoogle Scholar
  6. 6.
    Andriacchi TP, Mundermann A, Smith RL, Alexander EJ, Dyrby CO, Koo S (2004) A framework for the in vivo pathomechanics of osteoarthritis at the knee. Ann Biomed Eng 32(3):447–457PubMedCrossRefGoogle Scholar
  7. 7.
    Araki D, Kuroda R, Kubo S, Fujita N, Tei K, Nishimoto K, Hoshino Y, Matsushita T, Matsumoto T, Nagamune K, Kurosaka M (2011) A prospective randomised study of anatomical single-bundle versus double-bundle anterior cruciate ligament reconstruction: quantitative evaluation using an electromagnetic measurement system. Int Orthop 35(3):439–446PubMedCrossRefGoogle Scholar
  8. 8.
    Asano T, Akagi M, Tanaka K, Tamura J, Nakamura T (2001) In vivo three-dimensional knee kinematics using a biplanar image-matching technique. Clin Orthop Relat Res 388:157–166PubMedCrossRefGoogle Scholar
  9. 9.
    Barrance PJ, Williams GN, Novotny JE, Buchanan TS (2005) A method for measurement of joint kinematics in vivo by registration of 3-D geometric models with cine phase contrast magnetic resonance imaging data. J Biomech Eng 127(5):829–837PubMedCrossRefGoogle Scholar
  10. 10.
    Barrance PJ, Williams GN, Snyder-Mackler L, Buchanan TS (2006) Altered knee kinematics in ACL-deficient non-copers: a comparison using dynamic MRI. J Orthop Res 24(2):132–140PubMedCrossRefGoogle Scholar
  11. 11.
    Bedi A, Musahl V, Lane C, Citak M, Warren RF, Pearle AD (2010) Lateral compartment translation predicts the grade of pivot shift: a cadaveric and clinical analysis. Knee Surg Sports Traumatol Arthrosc 18(9):1269–1276PubMedCrossRefGoogle Scholar
  12. 12.
    Beynnon BD, Johnson RJ, Abate JA, Fleming BC, Nichols CE (2005) Treatment of anterior cruciate ligament injuries, part I. Am J Sports Med 33(10):1579–1602PubMedCrossRefGoogle Scholar
  13. 13.
    Branch TP, Browne JE, Campbell JD, Siebold R, Freedberg HI, Arendt EA, Lavoie F, Neyret P, Jacobs CA (2010) Rotational laxity greater in patients with contralateral anterior cruciate ligament injury than healthy volunteers. Knee Surg Sports Traumatol Arthrosc 18(10):1379–1384PubMedCrossRefGoogle Scholar
  14. 14.
    Brandsson S, Karlsson J, Sward L, Kartus J, Eriksson BI, Karrholm J (2002) Kinematics and laxity of the knee joint after anterior cruciate ligament reconstruction: pre- and post-operative radiostereometric studies. Am J Sports Med 30(3):361–367PubMedGoogle Scholar
  15. 15.
    Bull AM, Earnshaw PH, Smith A, Katchburian MV, Hassan AN, Amis AA (2002) Intraoperative measurement of knee kinematics in reconstruction of the anterior cruciate ligament. J Bone Jt Surg Br 84(7):1075–1081CrossRefGoogle Scholar
  16. 16.
    Bull AMJ, Amis AA (1998) The pivot-shift phenomenon: a clinical and biomechanical perspective. Knee 5(3):141–158CrossRefGoogle Scholar
  17. 17.
    Carpenter RD, Majumdar S, Ma CB (2009) Magnetic resonance imaging of 3-dimensional in vivo tibiofemoral kinematics in anterior cruciate ligament-reconstructed knees. Arthroscopy 25(7):760–766PubMedCrossRefGoogle Scholar
  18. 18.
    Colombet P, Robinson J, Christel P, Franceschi JP, Djian P (2007) Using navigation to measure rotation kinematics during ACL reconstruction. Clin Orthop Relat Res 454:59–65PubMedCrossRefGoogle Scholar
  19. 19.
    Daniel DM, Stone ML, Sachs R, Malcom L (1985) Instrumented measurement of anterior knee laxity in patients with acute anterior cruciate ligament disruption. Am J Sports Med 13(6):401–407PubMedCrossRefGoogle Scholar
  20. 20.
    Defrate LE, Papannagari R, Gill TJ, Moses JM, Pathare NP, Li G (2006) The 6 degrees of freedom kinematics of the knee after anterior cruciate ligament deficiency: an in vivo imaging analysis. Am J Sports Med 34(8):1240–1246PubMedCrossRefGoogle Scholar
  21. 21.
    Deneweth JM, Bey MJ, McLean SG, Lock TR, Kolowich PA, Tashman S (2010) Tibiofemoral joint kinematics of the anterior cruciate ligament-reconstructed knee during a single-legged hop landing. Am J Sports Med 38(9):1820–1828PubMedCrossRefGoogle Scholar
  22. 22.
    Dennis DA, Komistek RD, Hoff WA, Gabriel SM (1996) In vivo knee kinematics derived using an inverse perspective technique. Clin Orthop Relat Res 331:107–117PubMedCrossRefGoogle Scholar
  23. 23.
    Dessenne V, Lavallee S, Julliard R, Orti R, Martelli S, Cinquin P (1995) Computer-assisted knee anterior cruciate ligament reconstruction: first clinical tests. J Image Guid Surg 1(1):59–64PubMedCrossRefGoogle Scholar
  24. 24.
    Fleming BC, Peura GD, Abate JA, Beynnon BD (2001) Accuracy and repeatability of Roentgen stereophotogrammetric analysis (RSA) for measuring knee laxity in longitudinal studies. J Biomech 34(10):1355–1359PubMedCrossRefGoogle Scholar
  25. 25.
    Galway HR, MacIntosh DL (1980) The lateral pivot shift: a symptom and sign of anterior cruciate ligament insufficiency. Clin Orthop Relat Res 147:45–50PubMedGoogle Scholar
  26. 26.
    Georgoulis A, Ristanis S, Moraiti C, Mitsou A, Bernard M, Stergiou N (2005) Three-dimensional kinematics of the tibiofemoral joint in ACL-deficient and reconstructed patients shows increased tibial rotation. Oper Tech Orthop 15(1):49–56CrossRefGoogle Scholar
  27. 27.
    Georgoulis AD, Ristanis S, Chouliaras V, Moraiti C, Stergiou N (2007) Tibial rotation is not restored after ACL reconstruction with a hamstring graft. Clin Orthop Relat Res 454:89–94PubMedCrossRefGoogle Scholar
  28. 28.
    Haughom B, Schairer W, Souza RB, Carpenter D, Ma CB, Li X (2011) Abnormal tibiofemoral kinematics following ACL reconstruction are associated with early cartilage matrix degeneration measured by MRI T1rho. Knee. doi: 10.1016/j.knee.2011.06.015
  29. 29.
    Hoshino Y, Kuroda R, Nagamune K, Araki D, Kubo S, Yamaguchi M, Kurosaka M (2011) Optimal measurement of clinical rotational test for evaluating anterior cruciate ligament insufficiency. Knee Surg Sports Traumatol Arthrosc. doi: 10.1007/s00167-011-1643-5
  30. 30.
    Hoshino Y, Kuroda R, Nagamune K, Yagi M, Mizuno K, Yamaguchi M, Muratsu H, Yoshiya S, Kurosaka M (2007) In vivo measurement of the pivot-shift test in the anterior cruciate ligament-deficient knee using an electromagnetic device. Am J Sports Med 35(7):1098–1104PubMedCrossRefGoogle Scholar
  31. 31.
    Hoshino Y, Wang JH, Lorenz S, Fu FH, Tashman S (2011) The effect of distal femur bony morphology on in vivo knee translational and rotational kinematics. Knee Surg Sports Traumatol Arthrosc. doi: 10.1007/s00167-011-1661-3
  32. 32.
    Isberg J, Faxen E, Laxdal G, Eriksson BI, Karrholm J, Karlsson J (2011) Will early reconstruction prevent abnormal kinematics after ACL injury? 2-year follow-up using dynamic radiostereometry in 14 patients operated with hamstring autografts. Knee Surg Sports Traumatol Arthrosc 19(10):1634–1642PubMedCrossRefGoogle Scholar
  33. 33.
    Ishibashi Y, Tsuda E, Yamamoto Y, Tsukada H, Toh S (2009) Navigation evaluation of the pivot-shift phenomenon during double-bundle anterior cruciate ligament reconstruction: is the posterolateral bundle more important? Arthroscopy 25(5):488–495PubMedCrossRefGoogle Scholar
  34. 34.
    Jonsson H, Karrholm J, Elmqvist LG (1993) Laxity after cruciate ligament injury in 94 knees: the KT-1000 arthrometer versus roentgen stereophotogrammetry. Acta Orthop Scand 64(5):567–570PubMedCrossRefGoogle Scholar
  35. 35.
    Jonsson H, Riklund-Ahlström K, Lind J (2004) Positive pivot shift after ACL reconstruction predicts later osteoarthrosis: 63 patients followed 5–9 years after surgery. Acta Orthop Scand 75(5):594–599PubMedCrossRefGoogle Scholar
  36. 36.
    Kaplan N, Wickiewicz TL, Warren RF (1990) Primary surgical treatment of anterior cruciate ligament ruptures: a long-term follow-up study. Am J Sports Med 18(4):354–358PubMedCrossRefGoogle Scholar
  37. 37.
    Karlsson J, Irrgang JJ, van Eck CF, Samuelsson K, Mejia HA, Fu FH (2011) Anatomic single- and double-bundle anterior cruciate ligament reconstruction, part 2: clinical application of surgical technique. Am J Sports Med 39(9):2016–2026PubMedCrossRefGoogle Scholar
  38. 38.
    Kendoff D, Meller R, Citak M, Pearle A, Marquardt S, Krettek C, Hufner T (2007) Navigation in ACL reconstruction: comparison with conventional measurement tools. Technol Health Care 15(3):221–230PubMedGoogle Scholar
  39. 39.
    Kocher MS, Steadman JR, Briggs KK, Sterett WI, Hawkins RJ (2004) Relationships between objective assessment of ligament stability and subjective assessment of symptoms and function after anterior cruciate ligament reconstruction. Am J Sports Med 32(3):629–634PubMedCrossRefGoogle Scholar
  40. 40.
    Kubo S, Muratsu H, Yoshiya S, Mizuno K, Kurosaka M (2007) Reliability and usefulness of a new in vivo measurement system of the pivot shift. Clin Orthop Relat Res 454:54–58PubMedCrossRefGoogle Scholar
  41. 41.
    Kuroda R, Hoshino Y, Kubo S, Araki D, Oka S, Nagamune K, Kurosaka M (2011) Similarities and differences of diagnostic manual tests for anterior cruciate ligament insufficiency: a global survey and kinematics assessment. Am J Sports Med. doi: 10.1177/0363546511423634
  42. 42.
    Labbe DR, de Guise JA, Mezghani N, Godbout V, Grimard G, Baillargeon D, Lavigne P, Fernandes J, Ranger P, Hagemeister N (2010) Feature selection using a principal component analysis of the kinematics of the pivot shift phenomenon. J Biomech 43(16):3080–3084PubMedCrossRefGoogle Scholar
  43. 43.
    Lane CG, Warren RF, Stanford FC, Kendoff D, Pearle AD (2008) In vivo analysis of the pivot shift phenomenon during computer navigated ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 16(5):487–492PubMedCrossRefGoogle Scholar
  44. 44.
    Laxdal G, Kartus J, Hansson L, Heidvall M, Ejerhed L, Karlsson J (2005) A prospective randomized comparison of bone-patellar tendon-bone and hamstring grafts for anterior cruciate ligament reconstruction. Arthroscopy 21(1):34–42PubMedCrossRefGoogle Scholar
  45. 45.
    Leitze Z, Losee RE, Jokl P, Johnson TR, Feagin JA (2005) Implications of the pivot shift in the ACL-deficient knee. Clin Orthop Relat Res 436:229–236PubMedCrossRefGoogle Scholar
  46. 46.
    Li G, Moses JM, Papannagari R, Pathare NP, De Frate LE, Gill TJ (2006) Anterior cruciate ligament deficiency alters the in vivo motion of the tibiofemoral cartilage contact points in both the anteroposterior and mediolateral directions. J Bone Jt Surg Am 88(8):1826–1834CrossRefGoogle Scholar
  47. 47.
    Li G, Van de Velde SK, Bingham JT (2008) Validation of a non-invasive fluoroscopic imaging technique for the measurement of dynamic knee joint motion. J Biomech 41(7):1616–1622PubMedCrossRefGoogle Scholar
  48. 48.
    Logan M, Dunstan E, Robinson J, Williams A, Gedroyc W, Freeman M (2004) Tibiofemoral kinematics of the anterior cruciate ligament (ACL)-deficient weightbearing, living knee employing vertical access open “interventional” multiple resonance imaging. Am J Sports Med 32(3):720–726PubMedCrossRefGoogle Scholar
  49. 49.
    Logan MC, Williams A, Lavelle J, Gedroyc W, Freeman M (2004) Tibiofemoral kinematics following successful anterior cruciate ligament reconstruction using dynamic multiple resonance imaging. Am J Sports Med 32(4):984–992PubMedCrossRefGoogle Scholar
  50. 50.
    Loh JC, Fukuda Y, Tsuda E, Steadman RJ, Fu FH, Woo SL (2003) Knee stability and graft function following anterior cruciate ligament reconstruction: comparison between 11 and 10 o’clock femoral tunnel placement. Arthroscopy 19(3):297–304PubMedCrossRefGoogle Scholar
  51. 51.
    Lopomo N, Bignozzi S, Martelli S, Zaffagnini S, Iacono F, Visani A, Marcacci M (2009) Reliability of a navigation system for intra-operative evaluation of antero-posterior knee joint laxity. Comput Biol Med 39(3):280–285PubMedCrossRefGoogle Scholar
  52. 52.
    Lopomo N, Zaffagnini S, Bignozzi S, Visani A, Marcacci M (2010) Pivot-shift test: analysis and quantification of knee laxity parameters using a navigation system. J Orthop Res 28(2):164–169PubMedGoogle Scholar
  53. 53.
    Lopomo N, Zaffagnini S, Signorelli C, Bignozzi S, Giordano G, Marcheggiani Muccioli GM, Visani A (2011) An original clinical methodology for non-invasive assessment of pivot-shift test. Comput Methods Biomech Biomed Eng. doi: 10.1080/10255842.2011.591788
  54. 54.
    Lubowitz JH, Bernardini BJ, Reid JB 3rd (2008) Current concepts review: comprehensive physical examination for instability of the knee. Am J Sports Med 36(3):577–594PubMedCrossRefGoogle Scholar
  55. 55.
    Maeyama A, Hoshino Y, Debandi A, Kato Y, Saeki K, Asai S, Goto B, Smolinski P, Fu FH (2011) Evaluation of rotational instability in the anterior cruciate ligament deficient knee using triaxial accelerometer: a biomechanical model in porcine knees. Knee Surg Sports Traumatol Arthrosc 19(8):1233–1238PubMedCrossRefGoogle Scholar
  56. 56.
    Martelli S, Zaffagnini S, Bignozzi S, Lopomo N, Marcacci M (2007) Description and validation of a navigation system for intra-operative evaluation of knee laxity. Comput Aided Surg 12(3):181–188PubMedGoogle Scholar
  57. 57.
    Matsumoto H (1990) Mechanism of the pivot shift. J Bone Jt Surg Br 72(5):816–821Google Scholar
  58. 58.
    Monaco E, Ferretti A, Labianca L, Maestri B, Speranza A, Kelly MJ, D’Arrigo C (2011) Navigated knee kinematics after cutting of the ACL and its secondary restraint. Knee Surg Sports Traumatol Arthrosc. doi: 10.1007/s00167-011-1640-8
  59. 59.
    Musahl V, Voos J, O’Loughlin PF, Stueber V, Kendoff D, Pearle AD (2010) Mechanized pivot shift test achieves greater accuracy than manual pivot shift test. Knee Surg Sports Traumatol Arthrosc 18(9):1208–1213PubMedCrossRefGoogle Scholar
  60. 60.
    Myers CA, Torry MR, Peterson DS, Shelburne KB, Giphart JE, Krong JP, Woo SL, Steadman JR (2011) Measurements of tibiofemoral kinematics during soft and stiff drop landings using biplane fluoroscopy. Am J Sports Med 39(8):1714–1722PubMedCrossRefGoogle Scholar
  61. 61.
    Nakamura S, Kobayashi M, Asano T, Arai R, Nakagawa Y, Nakamura T (2011) Image-matching technique can detect rotational and AP instabilities in chronic ACL-deficient knees. Knee Surg Sports Traumatol Arthrosc 19(1):69–76Google Scholar
  62. 62.
    Nicholson JA, Sutherland AG, Smith FW (2011) Single bundle anterior cruciate reconstruction does not restore normal knee kinematics at 6 months: an upright MRI study. J Bone Jt Surg Br 93(10):1334–1340CrossRefGoogle Scholar
  63. 63.
    Nicholson JA, Sutherland AG, Smith FW, Kawasaki T (2010) Upright MRI in kinematic assessment of the ACL-deficient knee. Knee 19(1):41–48Google Scholar
  64. 64.
    Noyes FR, Grood ES, Cummings JF, Wroble RR (1991) An analysis of the pivot shift phenomenon: the knee motions and subluxations induced by different examiners. Am J Sports Med 19(2):148–155PubMedCrossRefGoogle Scholar
  65. 65.
    Okazaki K, Miura H, Matsuda S, Yasunaga T, Nakashima H, Konishi K, Iwamoto Y, Hashizume M (2007) Assessment of anterolateral rotatory instability in the anterior cruciate ligament-deficient knee using an open magnetic resonance imaging system. Am J Sports Med 35(7):1091–1097PubMedCrossRefGoogle Scholar
  66. 66.
    Pearle AD, Daniel BL, Bergman AG, Beaulieu CF, Lang P, Dumoulin CL, Darrow RD, Norbash AM, Napper CL, Hurtak W, Butts K (1999) Joint motion in an open MR unit using MR tracking. J Magn Reson 10(1):8–14CrossRefGoogle Scholar
  67. 67.
    Pearle AD, Solomon DJ, Wanich T, Moreau-Gaudry A, Granchi CC, Wickiewicz TL, Warren RF (2007) Reliability of navigated knee stability examination: a cadaveric evaluation. Am J Sports Med 35(8):1315–1320PubMedCrossRefGoogle Scholar
  68. 68.
    Prins M (2006) The Lachman test is the most sensitive and the pivot shift the most specific test for the diagnosis of ACL rupture. Aust J Physiother 52(1):66PubMedCrossRefGoogle Scholar
  69. 69.
    Samuelsson K, Andersson D, Karlsson J (2009) Treatment of anterior cruciate ligament injuries with special reference to graft type and surgical technique: an assessment of randomized controlled trials. Arthroscopy 25(10):1139–1174PubMedCrossRefGoogle Scholar
  70. 70.
    Sernert N, Helmers J, Kartus C, Ejerhed L, Kartus J (2007) Knee-laxity measurements examined by a left- and a right-hand-dominant physiotherapist, in patients with anterior cruciate ligament injuries and healthy controls. Knee Surg Sports Traumatol Arthrosc 15(10):1181–1186PubMedCrossRefGoogle Scholar
  71. 71.
    Sernert N, Kartus J, Köhler K, Ejerhed L, Karlsson J (2001) Evaluation of the reproducibility of the KT-1000 arthrometer. Scand J Med Sci Sports 11(2):120–125PubMedCrossRefGoogle Scholar
  72. 72.
    Shefelbine SJ, Ma CB, Lee KY, Schrumpf MA, Patel P, Safran MR, Slavinsky JP, Majumdar S (2006) MRI analysis of in vivo meniscal and tibiofemoral kinematics in ACL-deficient and normal knees. J Orthop Res 24(6):1208–1217PubMedCrossRefGoogle Scholar
  73. 73.
    Sommer C, Friederich NF, Muller W (2000) Improperly placed anterior cruciate ligament grafts: correlation between radiological parameters and clinical results. Knee Surg Sports Traumatol Arthrosc 8(4):207–213PubMedCrossRefGoogle Scholar
  74. 74.
    Tashiro Y, Okazaki K, Miura H, Matsuda S, Yasunaga T, Hashizume M, Nakanishi Y, Iwamoto Y (2009) Quantitative assessment of rotatory instability after anterior cruciate ligament reconstruction. Am J Sports Med 37(5):909–916PubMedCrossRefGoogle Scholar
  75. 75.
    Tashman S (2008) Comments on “validation of a non-invasive fluoroscopic imaging technique for the measurement of dynamic knee joint motion”. J Biomech 41(15):3290–3291PubMedCrossRefGoogle Scholar
  76. 76.
    Tashman S, Anderst W (2003) In vivo measurement of dynamic joint motion using high speed biplane radiography and CT: application to canine ACL deficiency. J Biomech Eng 125(2):238–245PubMedCrossRefGoogle Scholar
  77. 77.
    Tashman S, Anderst W, Kolowich P, Havstad S, Arnoczky S (2004) Kinematics of the ACL-deficient canine knee during gait: serial changes over 2 years. J Orthop Res 22(5):931–941PubMedCrossRefGoogle Scholar
  78. 78.
    Tashman S, Collon D, Anderson K, Kolowich P, Anderst W (2004) Abnormal rotational knee motion during running after anterior cruciate ligament reconstruction. Am J Sports Med 32(4):975–983PubMedCrossRefGoogle Scholar
  79. 79.
    Tashman S, Kolowich P, Collon D, Anderson K, Anderst W (2007) Dynamic function of the ACL-reconstructed knee during running. Clin Orthop Relat Res 454:66–73PubMedCrossRefGoogle Scholar
  80. 80.
    Wetzler MJ, Bartolozzi AR, Gillespie MJ, Rubenstein DL, Ciccotti MG, Miller LS (1996) Revision anterior cruciate ligament reconstruction. Oper Tech Orthop 6(3):181–189CrossRefGoogle Scholar
  81. 81.
    Yagi M, Wong EK, Kanamori A, Debski RE, Fu FH, Woo SL (2002) Biomechanical analysis of an anatomic anterior cruciate ligament reconstruction. Am J Sports Med 30(5):660–666PubMedGoogle Scholar
  82. 82.
    Yamaguchi S, Gamada K, Sasho T, Kato H, Sonoda M, Banks SA (2009) In vivo kinematics of anterior cruciate ligament deficient knees during pivot and squat activities. Clin Biomech 24(1):71–76CrossRefGoogle Scholar
  83. 83.
    Yamamoto Y, Ishibashi Y, Tsuda E, Tsukada H, Maeda S, Toh S (2010) Comparison between clinical grading and navigation data of knee laxity in ACL-deficient knees. Sports Med Arthrosc Rehabil Ther Technol 2:27PubMedCrossRefGoogle Scholar
  84. 84.
    Yasuda K, van Eck CF, Hoshino Y, Fu FH, Tashman S (2011) Anatomic single- and double-bundle anterior cruciate ligament reconstruction, part 1: basic science. Am J Sports Med 39(8):1789–1799PubMedCrossRefGoogle Scholar
  85. 85.
    Zaffagnini S, Bignozzi S, Martelli S, Imakiire N, Lopomo N, Marcacci M (2006) New intraoperative protocol for kinematic evaluation of ACL reconstruction: preliminary results. Knee Surg Sports Traumatol Arthrosc 14(9):811–816PubMedCrossRefGoogle Scholar
  86. 86.
    Zaffagnini S, Klos TV, Bignozzi S (2010) Computer-assisted anterior cruciate ligament reconstruction: an evidence-based approach of the first 15 years. Arthroscopy 26(4):546–554PubMedCrossRefGoogle Scholar
  87. 87.
    Zaffagnini S, Signorelli C, Lopomo N, Bonanzinga T, Marcheggiani Muccioli GM, Bignozzi S, Visani A, Marcacci M (2011) Anatomic double-bundle and over-the-top single-bundle with additional extra-articular tenodesis: an in vivo quantitative assessment of knee laxity in two different ACL reconstructions. Knee Surg Sports Traumatol Arthrosc. doi: 10.1007/s00167-011-1589-7 Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Mattias Ahldén
    • 1
    • 2
    Email author
  • Yuichi Hoshino
    • 2
  • Kristian Samuelsson
    • 1
  • Paulo Araujo
    • 2
  • Volker Musahl
    • 2
  • Jón Karlsson
    • 1
  1. 1.Department of OrthopaedicsSahlgrenska University Hospital/MölndalMölndalSweden
  2. 2.Department of Orthopaedic SurgeryUniversity of PittsburghPittsburghUSA

Personalised recommendations