Evaluating rotational kinematics of the knee in ACL-ruptured and healthy patients using 3.0 Tesla magnetic resonance imaging

  • Bryan D. Haughom
  • Richard Souza
  • William W. Schairer
  • Xiaojuan Li
  • C. Benjamin MaEmail author



Rotational knee laxity is an important measure in restoring knee stability following anterior cruciate ligament (ACL) injury, but is difficult to quantify with current clinical tools. The hypothesis of the study is that there is greater tibial rotation (TR) in women than men, and also in ACL-deficient than healthy knees.


Sixteen healthy (8 men, 26.8 ± 6.4 years; 8 women, 26.9 ± 3.8 years) and ten ACL-deficient (5 men, 33.6 ± 10.5 years; 5 women, 36.3 ± 10.7 years) subjects received bilateral knee MRI in 15° of flexion using a custom device to apply a constant axial compressive load (44 N). A rotational torque (3.35 Nm) was sequentially applied to obtain images at internal and external rotation positions. T 2-weighted images were acquired in internal and external rotation. Images were segmented and TR was calculated. To assess reproducibility, six knees were scanned twice on separate days. Group comparisons were made with unpaired t tests, while intrasubject comparisons were made using paired t tests.


Healthy women demonstrated greater TR than men (13.6° ± 4.7° vs. 8.3° ± 3.6°; P = 0.001). Male ACL-deficient knees showed greater TR than the contralateral knee (15.7° ± 6.9° vs. 7.7° ± 5.6°; P = 0.003), and compared to male controls (P = 0.002). ACL-deficient women showed greater TR compared to their contralateral leg (15.1° ± 2.3° vs. 10.0° ± 4.3°; P = 0.01). The intraclass correlation coefficient of the TR measurement was 0.913, and the SEM = 1.1°.


Kinematic MRI is a reproducible method to quantify total knee rotation. Women have more rotational laxity than men, particularly in the external rotation position. ACL rupture leads to increased rotational laxity of the knee.

Level of evidence

Retrospective case–control series, Level III.


Anterior cruciate ligament Tibial rotation Kinematics Knee Imaging MRI 


  1. 1.
    Ahlden M, Kartus J, Ejerhed L, Karlsson J, Sernert N (2009) Knee laxity measurements after anterior cruciate ligament reconstruction, using either bone-patellar-tendon-bone or hamstring tendon auto grafts, with special emphasis on comparison over time. Knee Surg Sports Traumatol Arthrosc 17(9):1117–1124PubMedCrossRefGoogle Scholar
  2. 2.
    Almquist PO, Arnbjornsson A, Zatterstrom R, Ryd L, Ekdahl C, Friden T (2002) Evaluation of an external device measuring knee joint rotation: an in vivo study with simultaneous Roentgen stereometric analysis. J Orthop Res 20(3):427–432PubMedCrossRefGoogle Scholar
  3. 3.
    Andersen HN, Dyhre-Poulsen P (1997) The anterior cruciate ligament does play a role in controlling axial rotation in the knee. Knee Surg Sports Traumatol Arthrosc 5(3):145–149PubMedCrossRefGoogle Scholar
  4. 4.
    Arendt E, Dick R (1995) Knee injury patterns among men and women in collegiate basketball and soccer. NCAA data and review of literature. Am J Sports Med 23(6):694–701PubMedCrossRefGoogle Scholar
  5. 5.
    Arendt EA, Bershadsky B, Agel J (2002) Periodicity of noncontact anterior cruciate ligament injuries during the menstrual cycle. J Gend Specif Med 5(2):19–26PubMedGoogle Scholar
  6. 6.
    Boden BP, Sheehan FT, Torg JS, Hewett TE (2010) Noncontact anterior cruciate ligament injuries: mechanisms and risk factors. J Am Acad Orthop Surg 18(9):520–527PubMedGoogle Scholar
  7. 7.
    Bull AM, Earnshaw PH, Smith A, Katchburian MV, Hassan AN, Amis AA (2002) Intraoperative measurement of knee kinematics in reconstruction of the anterior cruciate ligament. J Bone Joint Surg Br 84(7):1075–1081PubMedCrossRefGoogle Scholar
  8. 8.
    Carpenter RD, Majumdar S, Ma CB (2009) Magnetic resonance imaging of 3-dimensional in vivo tibiofemoral kinematics in anterior cruciate ligament-reconstructed knees. Arthroscopy 25(7):760–766PubMedCrossRefGoogle Scholar
  9. 9.
    Carpenter RD, Shefelbine S, Lozano J, Carballido-Gamio J, Majumdar S, Ma CB (2008) A new device for measuring knee rotational kinematics using magnetic resonance imaging. J Med Device 2(4):044501CrossRefGoogle Scholar
  10. 10.
    Chandrashekar N, Slauterbeck J, Hashemi J (2005) Sex-based differences in the anthropometric characteristics of the anterior cruciate ligament and its relation to intercondylar notch geometry: a cadaveric study. Am J Sports Med 33(10):1492–1498PubMedCrossRefGoogle Scholar
  11. 11.
    Chouliaras V, Ristanis S, Moraiti C, Stergiou N, Georgoulis AD (2007) Effectiveness of reconstruction of the anterior cruciate ligament with quadrupled hamstrings and bone-patellar tendon-bone autografts: an in vivo study comparing tibial internal-external rotation. Am J Sports Med 35(2):189–196PubMedCrossRefGoogle Scholar
  12. 12.
    Claes S, Neven E, Callewaert B, Desloovere K, Bellemans J (2011) Tibial rotation in single- and double-bundle ACL reconstruction: a kinematic 3-D in vivo analysis. Knee Surg Sports Traumatol Arthrosc. doi: 10.1007/s00167-011-1568-z
  13. 13.
    Colombet P, Robinson J, Christel P, Franceschi JP, Djian P (2007) Using navigation to measure rotation kinematics during ACL reconstruction. Clin Orthop Relat Res 454:59–65PubMedCrossRefGoogle Scholar
  14. 14.
    Fu FH (2011) Double-bundle ACL reconstruction. Orthopedics 34(4):281–283PubMedGoogle Scholar
  15. 15.
    Fung DT, Hendrix RW, Koh JL, Zhang LQ (2007) ACL impingement prediction based on MRI scans of individual knees. Clin Orthop Relat Res 460:210–218PubMedGoogle Scholar
  16. 16.
    Gao B, Zheng NN (2010) Alterations in three-dimensional joint kinematics of anterior cruciate ligament-deficient and -reconstructed knees during walking. Clin Biomech (Bristol, Avon) 25(3):222–229CrossRefGoogle Scholar
  17. 17.
    Georgoulis AD, Papadonikolakis A, Papageorgiou CD, Mitsou A, Stergiou N (2003) Three-dimensional tibiofemoral kinematics of the anterior cruciate ligament-deficient and reconstructed knee during walking. Am J Sports Med 31(1):75–79PubMedGoogle Scholar
  18. 18.
    Girgis FG, Marshall JL, Monajem A (1975) The cruciate ligaments of the knee joint. Anatomical, functional and experimental analysis. Clin Orthop Relat Res 106:216–231PubMedCrossRefGoogle Scholar
  19. 19.
    Gobbi A, Mahajan V, Karnatzikos G, Nakamura N (2011) Single- versus double-bundle ACL reconstruction: is there any difference in stability and function at 3-year followup? Clin Orthop Relat Res. doi: 10.1007/s11999-011-1940-9
  20. 20.
    Hofbauer M, Valentin P, Kdolsky R, Ostermann RC, Graf A, Figl M, Aldrian S (2010) Rotational and translational laxity after computer-navigated single- and double-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 18(9):1201–1207PubMedCrossRefGoogle Scholar
  21. 21.
    Ireland ML, Ott SM (2004) Special concerns of the female athlete. Clin Sports Med 23(2):281–298, viiGoogle Scholar
  22. 22.
    Isberg J, Faxen E, Laxdal G, Eriksson BI, Karrholm J, Karlsson J (2011) Will early reconstruction prevent abnormal kinematics after ACL injury? Two-year follow-up using dynamic radiostereometry in 14 patients operated with hamstring autografts. Knee Surg Sports Traumatol Arthrosc 19(10):1634–1642PubMedCrossRefGoogle Scholar
  23. 23.
    Lorbach O, Wilmes P, Theisen D, Brockmeyer M, Maas S, Kohn D, Seil R (2009) Reliability testing of a new device to measure tibial rotation. Knee Surg Sports Traumatol Arthrosc 17(8):920–926PubMedCrossRefGoogle Scholar
  24. 24.
    Moul JL (1998) Differences in selected predictors of anterior cruciate ligament tears between male and female NCAA division i collegiate basketball players. J Athl Train 33(2):118–121PubMedGoogle Scholar
  25. 25.
    Musahl V, Bell KM, Tsai AG, Costic RS, Allaire R, Zantop T, Irrgang JJ, Fu FH (2007) Development of a simple device for measurement of rotational knee laxity. Knee Surg Sports Traumatol Arthrosc 15(8):1009–1012PubMedCrossRefGoogle Scholar
  26. 26.
    Park HS, Wilson NA, Zhang LQ (2008) Gender differences in passive knee biomechanical properties in tibial rotation. J Orthop Res 26(7):937–944PubMedCrossRefGoogle Scholar
  27. 27.
    Rong GW, Wang YC (1987) The role of cruciate ligaments in maintaining knee joint stability. Clin Orthop Relat Res 215:65–71PubMedGoogle Scholar
  28. 28.
    Samukawa M, Magee D, Katayose M (2007) The effect of tibial rotation on the presence of instability in the anterior cruciate ligament deficient knee. J Sport Rehabil 16(1):2–17PubMedGoogle Scholar
  29. 29.
    Schmitz RJ, Ficklin TK, Shimokochi Y, Nguyen AD, Beynnon BD, Perrin DH, Shultz SJ (2008) Varus/valgus and internal/external torsional knee joint stiffness differs between sexes. Am J Sports Med 36(7):1380–1388PubMedCrossRefGoogle Scholar
  30. 30.
    Shin CS, Carpenter RD, Majumdar S, Ma CB (2009) Three-dimensional in vivo patellofemoral kinematics and contact area of anterior cruciate ligament-deficient and -reconstructed subjects using magnetic resonance imaging. Arthroscopy 25(11):1214–1223PubMedCrossRefGoogle Scholar
  31. 31.
    Shultz SJ, Shimokochi Y, Nguyen AD, Schmitz RJ, Beynnon BD, Perrin DH (2007) Measurement of varus-valgus and internal-external rotational knee laxities in vivo–Part II: relationship with anterior-posterior and general joint laxity in males and females. J Orthop Res 25(8):989–996PubMedCrossRefGoogle Scholar
  32. 32.
    Takeda Y, Sato R, Ogawa T, Fujii K, Naruse A (2009) In vivo magnetic resonance imaging measurement of tibiofemoral relation with different knee flexion angles after single- and double-bundle anterior cruciate ligament reconstructions. Arthroscopy 25(7):733–741PubMedCrossRefGoogle Scholar
  33. 33.
    Tashman S, Collon D, Anderson K, Kolowich P, Anderst W (2004) Abnormal rotational knee motion during running after anterior cruciate ligament reconstruction. Am J Sports Med 32(4):975–983PubMedCrossRefGoogle Scholar
  34. 34.
    Tsai AG, Musahl V, Steckel H, Bell KM, Zantop T, Irrgang JJ, Fu FH (2008) Rotational knee laxity: reliability of a simple measurement device in vivo. BMC Musculoskelet Disord 9:35PubMedCrossRefGoogle Scholar
  35. 35.
    van Eck CF, Schreiber VM, Mejia HA, Samuelsson K, van Dijk CN, Karlsson J, Fu FH (2010) “Anatomic” anterior cruciate ligament reconstruction: a systematic review of surgical techniques and reporting of surgical data. Arthroscopy 26(9 Suppl):S2–S12PubMedGoogle Scholar
  36. 36.
    Varadarajan KM, Gill TJ, Freiberg AA, Rubash HE, Li G (2009) Gender differences in trochlear groove orientation and rotational kinematics of human knees. J Orthop Res 27(7):871–878PubMedCrossRefGoogle Scholar
  37. 37.
    Yu B, Garrett WE (2007) Mechanisms of non-contact ACL injuries. Br J Sports Med 41(Suppl 1):i47–i51PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Bryan D. Haughom
    • 1
  • Richard Souza
    • 2
  • William W. Schairer
    • 1
  • Xiaojuan Li
    • 2
  • C. Benjamin Ma
    • 3
    Email author
  1. 1.School of MedicineUniversity of California, San Francisco (UCSF)San FranciscoUSA
  2. 2.Musculoskeletal Quantitative Imaging Research, Department of RadiologyUCSFSan FranciscoUSA
  3. 3.Department of Orthopaedic Surgery, San Francisco School of MedicineUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations