Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 20, Issue 6, pp 1192–1204 | Cite as

A novel nano-structured porous polycaprolactone scaffold improves hyaline cartilage repair in a rabbit model compared to a collagen type I/III scaffold: in vitro and in vivo studies

  • Bjørn Borsøe Christensen
  • Casper Bindzus Foldager
  • Ole Møller Hansen
  • Asger Albæk Kristiansen
  • Dang Quang Svend Le
  • Agnete Desirée Nielsen
  • Jens Vinge Nygaard
  • Cody Erik Bünger
  • Martin Lind
Experimental Study

Abstract

Purpose

To develop a nano-structured porous polycaprolactone (NSP-PCL) scaffold and compare the articular cartilage repair potential with that of a commercially available collagen type I/III (Chondro-Gide®) scaffold.

Methods

By combining rapid prototyping and thermally induced phase separation, the NSP-PCL scaffold was produced for matrix-assisted autologous chondrocyte implantation. Lyophilizing a water–dioxane–PCL solution created micro and nano-pores. In vitro: The scaffolds were seeded with rabbit chondrocytes and cultured in hypoxia for 6 days. qRT–PCR was performed using primers for sox9, aggrecan, collagen type 1 and 2. In vivo: 15 New Zealand White Rabbits received bilateral osteochondral defects in the femoral intercondylar grooves. Autologous chondrocytes were harvested 4 weeks prior to surgery. There were 3 treatment groups: (1) NSP-PCL scaffold without cells. (2) The Chondro-Gide® scaffold with autologous chondrocytes and (3) NSP-PCL scaffold with autologous chondrocytes. Observation period was 13 weeks. Histological evaluation was made using the O’Driscoll score.

Results

In vitro: The expressions of sox9 and aggrecan were higher in the NSP-PCL scaffold, while expression of collagen 1 was lower compared to the Chondro-Gide® scaffold. In vivo: Both NSP-PCL scaffolds with and without cells scored significantly higher than the Chondro-Gide® scaffold when looking at the structural integrity and the surface regularity of the repair tissue. No differences were found between the NSP-PCL scaffold with and without cells.

Conclusion

The NSP-PCL scaffold demonstrated higher in vitro expression of chondrogenic markers and had higher in vivo histological scores compared to the Chondro-Gide® scaffold. The improved chondrocytic differentiation can potentially produce more hyaline cartilage during clinical cartilage repair. It appears to be a suitable cell-free implant for hyaline cartilage repair and could provide a less costly and more effective treatment option than the Chondro-Gide® scaffold with cells.

Keywords

Chondrocyte transplantation Cell-free scaffold Articular cartilage repair Rabbit model Polycaprolactone 

References

  1. 1.
    Behrens P, Bitter T, Kurz B, Russlies M (2006) Matrix-associated autologous chondrocyte transplantation/implantation (MACT/MACI): 5-year follow-up. Knee 13:194–202PubMedCrossRefGoogle Scholar
  2. 2.
    Behrens P, Bosch U, Bruns J, Erggelet C, Esenwein SA, Gaissmaier C, Krackhardt T, Lohnert J, Marlovits S, Meenen NM, Mollenhauer J, Nehrer S, Niethard FU, Noth U, Perka C, Richter W, Schafer D, Schneider U, Steinwachs M, Weise K (2004) Indications and implementation of recommendations of the working group “tissue regeneration and tissue substitutes” for autologous chondrocyte transplantation (ACT). Z Orthop Ihre Grenzgeb 142:529–539PubMedCrossRefGoogle Scholar
  3. 3.
    Benthien JP, Behrens P (2010) Autologous matrix-induced chondrogenesis (AMIC). A one-step procedure for retropatellar articular resurfacing. Acta Orthop Belg 76:260–263PubMedGoogle Scholar
  4. 4.
    Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331:889–895PubMedCrossRefGoogle Scholar
  5. 5.
    Buckwalter JA, Mankin HJ (1998) Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect 47:487–504PubMedGoogle Scholar
  6. 6.
    Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143PubMedCrossRefGoogle Scholar
  7. 7.
    Ehlers EM, Fuss M, Rohwedel J, Russlies M, Kuhnel W, Behrens P (1999) Development of a biocomposite to fill out articular cartilage lesions. Light, scanning and transmission electron microscopy of sheep chondrocytes cultured on a collagen I/III sponge. Ann Anat 181:513–518PubMedCrossRefGoogle Scholar
  8. 8.
    Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689PubMedCrossRefGoogle Scholar
  9. 9.
    Haddo O, Mahroof S, Higgs D, David L, Pringle J, Bayliss M, Cannon SR, Briggs TW (2004) The use of chondrogide membrane in autologous chondrocyte implantation. Knee 11:51–55PubMedCrossRefGoogle Scholar
  10. 10.
    Hall FM, Wyshak G (1980) Thickness of articular cartilage in the normal knee. J Bone Jt Surg Am 62:408–413Google Scholar
  11. 11.
    Hattori T, Muller C, Gebhard S, Bauer E, Pausch F, Schlund B, Bosl MR, Hess A, Surmann-Schmitt C, von der Mark H, de Crombrugghe B, von der Mark K (2010) SOX9 is a major negative regulator of cartilage vascularization, bone marrow formation and endochondral ossification. Development 137:901–911PubMedCrossRefGoogle Scholar
  12. 12.
    Ho ST, Hutmacher DW, Ekaputra AK, Hitendra D, Hui JH (2010) The evaluation of a biphasic osteochondral implant coupled with an electrospun membrane in a large animal model. Tiss Eng Part A 16:1123–1141CrossRefGoogle Scholar
  13. 13.
    Hunziker EB (2002) Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr Cartil 10:432–463PubMedCrossRefGoogle Scholar
  14. 14.
    Kon E, Filardo G, Condello V, Collarile M, Di Martino A, Zorzi C, Marcacci M (2011) Second-generation autologous chondrocyte implantation: results in patients older than 40 years. Am J Sports Med 39:1668–1675PubMedCrossRefGoogle Scholar
  15. 15.
    Krishnan SP, Skinner JA, Carrington RW, Flanagan AM, Briggs TW, Bentley G (2006) Collagen-covered autologous chondrocyte implantation for osteochondritis dissecans of the knee: 2–7-year results. J Bone Jt Surg Br 88:203–205CrossRefGoogle Scholar
  16. 16.
    Kubo S, Cooper GM, Matsumoto T, Phillippi JA, Corsi KA, Usas A, Li G, Fu FH, Huard J (2009) Blocking vascular endothelial growth factor with soluble Flt-1 improves the chondrogenic potential of mouse skeletal muscle-derived stem cells. Arthritis Rheum 60:155–165PubMedCrossRefGoogle Scholar
  17. 17.
    Lam CX, Hutmacher DW, Schantz JT, Woodruff MA, Teoh SH (2009) Evaluation of polycaprolactone scaffold degradation for 6 months in vitro and in vivo. J Biomed Mater Res A 90:906–919PubMedGoogle Scholar
  18. 18.
    Maehara H, Sotome S, Yoshii T, Torigoe I, Kawasaki Y, Sugata Y, Yuasa M, Hirano M, Mochizuki N, Kikuchi M, Shinomiya K, Okawa A (2010) Repair of large osteochondral defects in rabbits using porous hydroxyapatite/collagen (HAp/Col) and fibroblast growth factor-2 (FGF-2). J Orthop Res 28:677–686PubMedGoogle Scholar
  19. 19.
    Martinez-Diaz S, Garcia-Giralt N, Lebourg M, Gomez-Tejedor JA, Vila G, Caceres E, Benito P, Pradas MM, Nogues X, Ribelles JL, Monllau JC (2010) In vivo evaluation of 3-D polycaprolactone scaffolds for cartilage repair in rabbits. Am J Sports Med 38:509–519PubMedCrossRefGoogle Scholar
  20. 20.
    Minas T, Nehrer S (1997) Current concepts in the treatment of articular cartilage defects. Orthopedics 20:525–538PubMedGoogle Scholar
  21. 21.
    Mrosek EH, Schagemann JC, Chung HW, Fitzsimmons JS, Yaszemski MJ, Mardones RM, O’Driscoll SW, Reinholz GG (2010) Porous tantalum and poly-epsilon-caprolactone biocomposites for osteochondral defect repair: preliminary studies in rabbits. J Orthop Res 28:141–148PubMedGoogle Scholar
  22. 22.
    Ng KW, Hutmacher DW, Schantz JT, Ng CS, Too HP, Lim TC, Phan TT, Teoh SH (2001) Evaluation of ultra-thin poly(epsilon-caprolactone) films for tissue-engineered skin. Tiss Eng 7:441–455CrossRefGoogle Scholar
  23. 23.
    Niemeyer P, Pestka JM, Kreuz PC, Erggelet C, Schmal H, Suedkamp NP, Steinwachs M (2008) Characteristic complications after autologous chondrocyte implantation for cartilage defects of the knee joint. Am J Sports Med 36:2091–2099PubMedCrossRefGoogle Scholar
  24. 24.
    O’Driscoll SW, Keeley FW, Salter RB (1988) Durability of regenerated articular cartilage produced by free autogenous periosteal grafts in major full-thickness defects in joint surfaces under the influence of continuous passive motion. A follow-up report at 1 year. J Bone Jt Surg Am 70:595–606Google Scholar
  25. 25.
    Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: best keeper–excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515PubMedCrossRefGoogle Scholar
  26. 26.
    Pitt CG, Gratzl MM, Kimmel GL, Surles J, Schindler A (1981) Aliphatic polyesters II. The degradation of poly (dl-lactide), poly (epsilon-caprolactone), and their copolymers in vivo. Biomaterials 2:215–220PubMedCrossRefGoogle Scholar
  27. 27.
    Reinholz GG, Lu L, Saris DB, Yaszemski MJ, O’Driscoll SW (2004) Animal models for cartilage reconstruction. Biomaterials 25:1511–1521PubMedCrossRefGoogle Scholar
  28. 28.
    Russlies M, Ruther P, Koller W, Stomberg P, Behrens P (2003) Biomechanical properties of cartilage repair tissue after different cartilage repair procedures in sheep. Z Orthop Ihre Grenzgeb 141:465–471PubMedCrossRefGoogle Scholar
  29. 29.
    Shao XX, Hutmacher DW, Ho ST, Goh JC, Lee EH (2006) Evaluation of a hybrid scaffold/cell construct in repair of high-load-bearing osteochondral defects in rabbits. Biomaterials 27:1071–1080PubMedCrossRefGoogle Scholar
  30. 30.
    Steinert AF, Ghivizzani SC, Rethwilm A, Tuan RS, Evans CH, Noth U (2007) Major biological obstacles for persistent cell-based regeneration of articular cartilage. Arthritis Res Ther 9:213PubMedCrossRefGoogle Scholar
  31. 31.
    Woodward SC, Brewer PS, Moatamed F, Schindler A, Pitt CG (1985) The intracellular degradation of poly(epsilon-caprolactone). J Biomed Mater Res 19:437–444PubMedCrossRefGoogle Scholar
  32. 32.
    Yamashita S, Andoh M, Ueno-Kudoh H, Sato T, Miyaki S, Asahara H (2009) Sox9 directly promotes Bapx1 gene expression to repress Runx2 in chondrocytes. Exp Cell Res 315:2231–2240PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Bjørn Borsøe Christensen
    • 1
  • Casper Bindzus Foldager
    • 1
  • Ole Møller Hansen
    • 1
  • Asger Albæk Kristiansen
    • 2
  • Dang Quang Svend Le
    • 2
  • Agnete Desirée Nielsen
    • 3
  • Jens Vinge Nygaard
    • 2
  • Cody Erik Bünger
    • 1
  • Martin Lind
    • 4
  1. 1.Orthopaedic Research LaboratoryAarhus University HospitalAarhus CDenmark
  2. 2.Interdisciplinary Nanoscience CenterAarhus UniversityAarhus CDenmark
  3. 3.Department of RadiologySilkeborg Regional HospitalSilkeborgDenmark
  4. 4.Department of Orthopaedic Surgery, The Sports Trauma ClinicAarhus University HospitalAarhus CDenmark

Personalised recommendations