Skip to main content
Log in

Articular cartilage of the posterior condyle can affect rotational alignment in total knee arthroplasty

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Rotational alignment is important for patellar tracking, ligament balance, and tibiofemoral congruity after total knee arthroplasty (TKA). The posterior condylar axis is often referred to as a rotational alignment landmark. However, articular cartilage wear localized only in the medial condyle might affect the accuracy of rotation, because surgical planning based on CT does not consider the cartilage thickness. The purpose of this study was to clarify whether the cartilage thickness of the posterior condyle affects rotational alignment after TKA.

Methods

A total of 40 osteoarthritis patients waiting for TKA were recruited. MRI of axial sections was performed preoperatively. Scans were controlled to make the cross section perpendicular to the mechanical axis of the femur on the coronal plane and to the tangent line of the distal femur on the sagittal plane, so that the surgical section of the actual femur could be simulated. The condylar twist angle (CTA) was measured with and without articular cartilage. The cartilage thickness on the medial and lateral posterior condyles was surveyed in both MRI images and surgical specimens.

Results

The CTA without cartilage (6.8 ± 2.0°) was significantly larger than the CTA with cartilage (5.2 ± 2.0°) (P < 0.01), and 12 knees (30%) demonstrated differences of more than 2 degrees. The cartilage depicted in MRI showed almost the same thickness as the actual specimens and was significantly thicker on the lateral condyles.

Conclusions

Surgical planning for TKA not considering articular cartilage might lead to the externally rotated malposition of the femoral implant.

Level of evidence

II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abadie P, Galaud B, Michaut M, Fallet L, Boisrenoult P, Beaufils P (2009) Distal femur rotational alignment and patellar subluxation: a CT scan in vivo assessment. Orthop Traumatol Surg Res 95:267–271

    Article  PubMed  CAS  Google Scholar 

  2. Akagi M, Matsusue Y, Mata T, Asada Y, Horiguchi M, Iida H, Nakamura T (1999) Effect of rotational alignment on patellar tracking in total knee arthroplasty. Clin Orthop Relat Res 366:155–163

    Article  PubMed  Google Scholar 

  3. Akagi M, Yamashita E, Nakagawa T, Asano T, Nakamura T (2001) Relationship between frontal knee alignment and reference axes in the distal femur. Clin Orthop Relat Res 388:147–156

    Article  PubMed  Google Scholar 

  4. Arima J, Whiteside LA, McCarthy DS, White SE (1995) Femoral rotational alignment, based on the anteroposterior axis, in total knee arthroplasty in a valgus knee. J Bone Jt Surg Am 77:1331–1334

    CAS  Google Scholar 

  5. Berger RA, Crossett LS, Jacobs JJ, Rubash HE (1998) Malrotation causing patellofemoral complications after total knee arthroplasty. Clin Orthop Relat Res 356:144–153

    Article  PubMed  Google Scholar 

  6. Berger RA, Rubash HE, Seel MJ, Thompson WH, Crossett LS (1993) Determining the rotational alignment of the femoral component in total knee arthroplasty using the epicondylar axis. Clin Orthop Relat Res 286:40–47

    PubMed  Google Scholar 

  7. Bonnin MP, Basiglini L, Archbold HA (2011) What are the factors of residual pain after uncomplicated TKA? Knee Surg Sports Traumatol Arthrosc 19:1411–1417

    Article  PubMed  Google Scholar 

  8. Churchill DL, Incavo SJ, Johnson CC, Beynnon BD (1998) The transepicondylar axis approximates the optimal flexion axis of the knee. Clin Orthop Relat Res 356:111–118

    Article  PubMed  Google Scholar 

  9. Colwell CW Jr, Chen PC, D’Lima D (2011) Extensor malalignment arising from femoral component malrotation in knee arthroplasty: effect of rotating-bearing. Clin Biomech 26:52–57

    Article  Google Scholar 

  10. D’Lima DD, Chen PC, Colwell CW Jr (2001) Polyethylene contact stresses, articular congruity, and knee alignment. Clin Orthop Relat Res 392:232–238

    Article  PubMed  Google Scholar 

  11. Griffin FM, Insall JN, Scuderi GR (1998) The posterior condylar angle in osteoarthritic knees. J Arthroplasty 13:812–815

    Article  PubMed  CAS  Google Scholar 

  12. Hashemi RH, Bradley WG Jr, Lisanti CJ (2004) MRI: the basics, 2nd edn. Williams & Wilkins, Philadelphia

    Google Scholar 

  13. Heesterbeek PJ, Wymenga AB (2010) Correction of axial and rotational alignment after medial and lateral releases during balanced gap TKA. A clinical study of 54 patients. Acta Orthop 81:347–353

    Article  PubMed  Google Scholar 

  14. Heesterbeek PJ, Wymenga AB (2010) PCL balancing, an example of the need to couple detailed biomechanical parameters with clinical functional outcome. Knee Surg Sports Traumatol Arthrosc 18:1301–1303

    Article  PubMed  CAS  Google Scholar 

  15. Lee DH, Seo JG, Moon YW (2008) Synchronisation of tibial rotational alignment with femoral component in total knee arthroplasty. Int Orthop 322:223–227

    Article  Google Scholar 

  16. Lee SY, Matsui N, Kurosaka M, Komistek RD, Mahfouz M, Dennis DA, Yoshiya S (2005) A posterior-stabilized total knee arthroplasty shows condylar lift-off during deep knee bends. Clin Orthop Relat Res 435:181–184

    Article  PubMed  Google Scholar 

  17. Luyckx L, Luyckx T, Bellemans J, Victor J (2010) Iliotibial band traction syndrome in guided motion TKA. A new clinical entity after TKA. Acta Orthop Belg 76:507–512

    PubMed  Google Scholar 

  18. Mantas JP, Bloebaum RD, Skedros JG, Hofmann AA (1992) Implications of reference axes used for rotational alignment of the femoral component in primary and revision knee arthroplasty. J Arthroplasty 7:531–535

    Article  PubMed  CAS  Google Scholar 

  19. Matsuda S, Matsuda H, Miyagi T, Sasaki K, Iwamoto Y, Miura H (1998) Femoral condyle geometry in the normal and varus knee. Clin Orthop Relat Res 349:183–188

    Article  PubMed  Google Scholar 

  20. Matsuda S, Miura H, Nagamine R, Mawatari T, Tokunaga M, Nabeyama R, Iwamoto Y (2004) Anatomical analysis of the femoral condyle in normal and osteoarthritic knees. J Orthop Res 22:104–109

    Article  PubMed  Google Scholar 

  21. Matsuda S, Miura H, Nagamine R, Urabe K, Hirata G, Iwamoto Y (2001) Effect of femoral and tibial component position on patellar tracking following total knee arthroplasty: 10-year follow-up of Miller-Galante I knees. Am J Knee Surg 14:152–156

    PubMed  CAS  Google Scholar 

  22. Ries MD, Salehi A, Laskin RS, Bourne RB, Rand JA, Gustilo RB (1998) Can rotational congruity be achieved in both flexion and extension when the femoral component is externally rotated in total knee arthroplasty? Knee 5:37–41

    Article  Google Scholar 

  23. Miller MC, Berger RA, Petrella AJ, Karmas A, Rubash HE (2001) Optimizing femoral component rotation in total knee arthroplasty. Clin Orthop Relat Res 392:38–45

    Article  PubMed  Google Scholar 

  24. Ogino S, Huang T, Watanabe A, Iranpour-Boroujeni T, Yoshioka H (2010) Magnetic resonance imaging of articular cartilage abnormalities of the far posterior femoral condyle of the knee. Acta Radiol 51:52–57

    Article  PubMed  Google Scholar 

  25. Piedade SR, Pinaroli A, Servien E, Neyret P (2009) Revision after early aseptic failures in primary total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 17:248–253

    Article  PubMed  Google Scholar 

  26. Poilvache PL (2001) The patella in total knee replacement: technical aspects on the femoral side. Knee Surg Sports Traumatol Arthrosc 9(Suppl 1):S13–S18

    Article  PubMed  Google Scholar 

  27. Poilvache PL, Insall JN, Scuderi GR, Font-Rodriguez DE (1996) Rotational landmarks and sizing of the distal femur in total knee arthroplasty. Clin Orthop Relat Res 331:35–46

    Article  PubMed  Google Scholar 

  28. Rossi R, Bruzzone M, Bonasia DE, Marmotti A, Castoldi F (2010) Evaluation of tibial rotational alignment in total knee arthroplasty: a cadaver study. Knee Surg Sports Traumatol Arthrosc 18:889–893

    Article  PubMed  Google Scholar 

  29. Scuderi GR, Komistek RD, Dennis DA, Insall JN (2003) The impact of femoral component rotational alignment on condylar lift-off. Clin Orthop Relat Res 410:148–154

    Article  PubMed  Google Scholar 

  30. Won YY, Cui WQ, Baek MH, Yun TB, Han SH (2007) An additional reference axis for determining rotational alignment of the femoral component in total knee arthroplasty. J Arthroplasty 22:1049–1053

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ms. Sumako Nishimura (Department of Advanced Medical Initiatives, Faculty of Medical Sciences, Kyushu University) for her assistance in operating the MRI system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasutaka Tashiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tashiro, Y., Uemura, M., Matsuda, S. et al. Articular cartilage of the posterior condyle can affect rotational alignment in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 20, 1463–1469 (2012). https://doi.org/10.1007/s00167-011-1691-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-011-1691-x

Keywords

Navigation