Skip to main content
Log in

The fixation strength of tibial PCL press-fit reconstructions

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

A secure tibial press-fit technique in posterior cruciate ligament reconstructions is an interesting technique because no hardware is necessary. For anterior cruciate ligament (ACL) reconstruction, a few press-fit procedures have been published. Up to the present point, no biomechanical data exist for a tibial press-fit posterior cruciate ligament (PCL) reconstruction. The purpose of this study was to characterize a press-fit procedure for PCL reconstruction that is biomechanically equivalent to an interference screw fixation.

Methods

Quadriceps and hamstring tendons of 20 human cadavers (age: 49.2 ± 18.5 years) were used. A press-fit fixation with a knot in the semitendinosus tendon (K) and a quadriceps tendon bone block graft (Q) were compared to an interference screw fixation (I) in 30 porcine femora. In each group, nine constructs were cyclically stretched and then loaded until failure. Maximum load to failure, stiffness, and elongation during failure testing and cyclical loading were investigated.

Results

The maximum load to failure was 518 ± 157 N (387–650 N) for the (K) group, 558 ± 119 N (466–650 N) for the (I) group, and 620 ± 102 N (541–699 N) for the (Q) group. The stiffness was 55 ± 27 N/mm (18–89 N/mm) for the (K) group, 117 ± 62 N/mm (69–165 N/mm) for the (I) group, and 65 ± 21 N/mm (49–82 N/mm) for the (Q) group. The stiffness of the (I) group was significantly larger (P = 0.01). The elongation during cyclical loading was significantly larger for all groups from the 1st to the 5th cycle compared to the elongation in between the 5th to the 20th cycle (P < 0.03).

Conclusion

All techniques exhibited larger elongation during initial loading. Load to failure and stiffness was significantly different between the fixations. The Q fixation showed equal biomechanical properties compared to a pure tendon fixation (I) with an interference screw.

All three fixation techniques that were investigated exhibit comparable biomechanical properties. Preconditioning of the constructs is critical. Clinical trials have to investigate the biological effectiveness of these fixation techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Amis AA, Gupte CM, Bull AMJ, Edwards A (2006) Anatomy of the posterior cruciate ligament and the meniscofemoral ligaments. Knee Surg Sports Traumatol Arthrosc 14(3):257–263

    Article  PubMed  CAS  Google Scholar 

  2. Aune AK, Ekeland A, Cawley PW (1998) Interference screw fixation of hamstring vs. patellar tendon grafts for anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 6(2):99–102

    Article  PubMed  CAS  Google Scholar 

  3. Bergfeld JA, Graham SM, Parker RD, Valdevit ADC, Kambic HE (2005) A biomechanical comparison of posterior cruciate ligament reconstructions using single-and double-bundle tibial inlay techniques. Am J Sports Med 33(7):976–983

    Article  PubMed  Google Scholar 

  4. Bergfeld JA, McAllister DR, Parker RD, Valdevit ADC, Kambic HE (2001) A biomechanical comparison of posterior cruciate ligament reconstruction techniques. Am J Sports Med 29(2):129–136

    PubMed  CAS  Google Scholar 

  5. Brand J (2000) Biomechanical comparison of quadriceps tendon fixation with patellar tendon bone plug interference fixation in cruciate ligament reconstruction. Arthroscopy 16(8):805–812

    Article  PubMed  Google Scholar 

  6. Brown CH Jr, Steiner ME, Carson EW (1993) The use of hamstring tendons for anterior cruciate ligament reconstruction. Technique and results. Clin Sports Med 12(4):723–756

    PubMed  Google Scholar 

  7. Caborn DNM, Urban WP (1997) Biomechanical comparison between BioScrew and titanium alloy interference screws for bone-patellar tendon–bone graft fixation in anterior cruciate ligament reconstruction. Arthroscopy 13(2):229–232

    Article  PubMed  CAS  Google Scholar 

  8. Campbell RB, Torrie A, Hecker A, Sekiya JK (2007) Comparison of tibial graft fixation between simulated arthroscopic and open inlay techniques for posterior cruciate ligament reconstruction. Am J Sports Med 35(10):1731–1738

    Article  PubMed  Google Scholar 

  9. Chen CH, Chen WJ, Shih CH, Chou SW (2004) Arthroscopic posterior cruciate ligament reconstruction with quadriceps tendon autograft: minimal 3 years follow-up. Am J Sports Med 32(2):361–368

    Article  PubMed  Google Scholar 

  10. Chen CH, Chou SW, Chen WJ, Shih CH (2004) Fixation strength of three different graft types used in posterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 12(5):371–375

    PubMed  Google Scholar 

  11. Drogset JO, Grøntvedt T, Myhr G (2006) Magnetic resonance imaging analysis of bioabsorbable interference screws used for fixation of boneñpatellar tendonñbone autografts in endoscopic reconstruction of the anterior cruciate ligament. Am J Sports Med 34(7):1164–1169

    Article  PubMed  Google Scholar 

  12. Ettinger M, Haasper C, Hankemeier S, Hurschler C, Breitmeier D, Krettek C, Jagodzinski M (2011) Biomechanical characterization of double-bundle femoral press-fit fixation techniques. Knee Surg Sports Traumatol Arthrosc 19(3):363–371

    Article  PubMed  CAS  Google Scholar 

  13. Frank CB, Jackson DW (1997) Current concepts review-the science of reconstruction of the anterior cruciate ligament. J Bone Joint Surg 79(10):1556

    PubMed  CAS  Google Scholar 

  14. Gupta A, Lattermann C, Busam M, Riff A, Bach BR, Wang VM (2009) Biomechanical evaluation of bioabsorbable versus metallic screws for posterior cruciate ligament inlay graft fixation. Am J Sports Med 37(4):748–753

    Article  PubMed  Google Scholar 

  15. Hiraga Y, Ishibashi Y, Tsuda E, Toh HTS (2006) Biomechanical comparison of posterior cruciate ligament reconstruction techniques using cyclic loading tests. Knee Surg Sports Traumatol Arthrosc 14(1):13–19

    Article  PubMed  Google Scholar 

  16. Höher J, Scheffler S, Weiler A (2003) Graft choice and graft fixation in PCL reconstruction. Knee Surg Sports Traumatol Arthrosc 11(5):297–306

    Article  PubMed  Google Scholar 

  17. Jagodzinski M, Behfar V, Hurschler C, Albrecht K, Krettek C, Bosch U (2004) Femoral press-fit fixation of the hamstring tendons for anterior cruciate ligament reconstruction. Am J Sports Med 32(7):1723–1730

    Article  PubMed  Google Scholar 

  18. Jagodzinski M, Scheunemann K, Knobloch K, Albrecht K, Krettek C, Hurschler C, Zeichen J (2006) Tibial press-fit fixation of the hamstring tendons for ACL-reconstruction. Knee Surg Sports Traumatol Arthrosc 14(12):1281–1287

    Article  PubMed  CAS  Google Scholar 

  19. Kocabey Y, Klein S, Nyland J, Caborn D (2004) Tibial fixation comparison of semitendinosus-bone composite allografts fixed with bioabsorbable screws and bone-patella tendon-bone grafts fixed with titanium screws. Knee Surg Sports Traumatol Arthrosc 12(2):88–93

    Article  PubMed  CAS  Google Scholar 

  20. Kousa P, Järvinen TLN, Vihavainen M, Kannus P, Järvinen M (2003) The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction part 1: femoral site. Am J Sports Med 31(2):174–181

    PubMed  Google Scholar 

  21. Krudwig WK (1996) Functional anatomy of the posterior cruciate ligament. Unfallchirurgie 22(2):49–56

    PubMed  CAS  Google Scholar 

  22. Kurosaka M, Yoshiya S, Andrish JT (1987) A biomechanical comparison of different surgical techniques of graft fixation in anterior cruciate ligament reconstruction. Am J Sports Med 15(3):225–229

    Article  PubMed  CAS  Google Scholar 

  23. Lee YS, Wang JH, Bae JH, Lim HC, Park JH, Ahn JH, Bae TS, Lim BO (2009) Biomechanical evaluation of cross-pin versus interference screw tibial fixation using a soft-tissue graft during transtibial posterior cruciate ligament reconstruction. Arthroscopy 25(9):989–995

    Article  PubMed  Google Scholar 

  24. Lehmann AK, Osada N, Zantop T, Raschke MJ, Petersen W (2009) Femoral bridge stability in double-bundle ACL reconstruction: impact of bridge width and different fixation techniques on the structural properties of the graft/femur complex. Arch Orthop Trauma Surg 129(8):1127–1132

    Article  PubMed  Google Scholar 

  25. Lim HC, Bae JH, Wang JH, Bae TS, Kim CW, Hwang JH, Yoon JY (2009) The biomechanical performance of bone block and soft-tissue posterior cruciate ligament graft fixation with interference screw and cross-pin techniques. Arthroscopy 25(3):250–256

    Article  PubMed  Google Scholar 

  26. Lobenhoffer P (1999) Chronic instability after posterior cruciate ligament injury. Tactics, techniques, and results. Unfallchirurg 102(11):824–838

    Article  PubMed  CAS  Google Scholar 

  27. Margheritini F, Mauro CS, Rihn JA, Stabile KJ, Woo SLY, Harner CD (2004) Biomechanical comparison of tibial inlay versus transtibial techniques for posterior cruciate ligament reconstruction. Am J Sports Med 32(3):587–593

    Article  PubMed  Google Scholar 

  28. Monaco E, Labianca L, Speranza A, AgrÚ AM, Camillieri G, DíArrigo C, Ferretti A (2010) Biomechanical evaluation of different anterior cruciate ligament fixation techniques for hamstring graft. J Orthop sci 15(1):125–131

    Article  PubMed  CAS  Google Scholar 

  29. Morrison JB (1970) The mechanics of the knee joint in relation to normal walking. J Biomechanic 3(1):51–61

    Article  CAS  Google Scholar 

  30. Nagano M, Yoshiya S, Kuroda R, Kurosaka M, Mizuno K (1997) Remodelling and healing process of bone-patellar tendon-bone graft in a bone tunnel: A histological study in dogs. Trans Orthop Res Soc 22:78

    Google Scholar 

  31. Noyes FR, Barber-Westin SD (2001) Revision anterior cruciate surgery with use of bone-patellar tendon-bone autogenous grafts. J Bone Joint Surg 83(8):1131–1143

    PubMed  Google Scholar 

  32. Nurmi JT, Sievänen H, Kannus P, Järvinen M, Järvinen TLN (2004) Porcine tibia is a poor substitute for human cadaver tibia for evaluating interference screw fixation. Am J Sports Med 32(3):765–771

    Article  PubMed  Google Scholar 

  33. Prodromos CC, Hecker A, Joyce B, Finkle S, Shi K (2009) Elongation of simulated whipstitch post anterior cruciate ligament reconstruction tibial fixation after cyclic loading. Knee Surg Sports Traumatol Arthrosc 17(8):914–919

    Article  PubMed  Google Scholar 

  34. Ruberte Thiele RA, Campbell RB, Amendola A, Sekiya JK (2010) Biomechanical comparison of figure-of-8 versus cylindrical tibial inlay constructs for arthroscopic posterior cruciate ligament reconstruction. Arthroscopy 26(7):977–983

    Article  PubMed  Google Scholar 

  35. Seil R, Rupp S, Krauss PW, Benz A, Kohn DM (1998) Comparison of initial fixation strength between biodegradable and metallic interference screws and a press-fit fixation technique in a porcine model. Am J Sports Med 26(6):815

    PubMed  CAS  Google Scholar 

  36. Seon JK, Song EK (2006) Reconstruction of isolated posterior cruciate ligament injuries: a clinical comparison of the transtibial and tibial inlay techniques. Arthroscopy 22(1):27–32

    Article  PubMed  Google Scholar 

  37. Shearn JT, Grood ES, Noyes FR, Levy MS (2006) One-and two-strand posterior cruciate ligament reconstructions: cyclic fatigue testing. J Orthop Res 23(4):958–963

    Article  Google Scholar 

  38. Steiner ME, Hecker AT, Brown CH, Hayes WC (1994) Anterior cruciate ligament graft fixation. Am J Sports Med 22(2):240–246

    Article  PubMed  CAS  Google Scholar 

  39. Strobel MJ, Weiler A, Eichhorn HJ (2000) Diagnosis and therapy of fresh and chronic posterior cruciate ligament lesions. Chirurg 71(9):1066

    Article  PubMed  CAS  Google Scholar 

  40. Weiler A, Hoffmann RF, Stähelin AC, Bail HJ, Siepe CJ, Südkamp NP (1998) Hamstring tendon fixation using interference screws: a biomechanical study in calf tibial bone. Arthroscopy 14(1):29–37

    Article  PubMed  CAS  Google Scholar 

  41. Weiler A, Hoffmann RFG, Stähelin AC, Helling HJ, Südkamp NP (2000) Biodegradable implants in sports medicine: the biological base. Arthroscopy 16(3):305–321

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they do not have any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ettinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ettinger, M., Wehrhahn, T., Petri, M. et al. The fixation strength of tibial PCL press-fit reconstructions. Knee Surg Sports Traumatol Arthrosc 20, 308–314 (2012). https://doi.org/10.1007/s00167-011-1584-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-011-1584-z

Keywords

Navigation