Improved stability with intramedullary stem after anterior femoral notching in total knee arthroplasty

Abstract

Purpose

It has been hypothesized that femoral notching in total knee arthroplasties weakens the cortex of the femur, which can predispose to femoral fractures in the postoperative period. Some authors suggest that patients who sustain inadvertent notching should have additional protection in the postoperative period, and consideration should be given to the use of prophylactic femoral stems. In this case, a question can be raised: Is the use of femoral stem in an anterior femoral notching an effective way to reduce the fracture risk? We hypothesized that for a larger notch, the use of a femoral stem does not decrease considerably the stress-riser at the notch edge, and the use of stem is not enough to reduce the risk of fracture.

Methods

In the present in vitro study, twelve synthetic femurs were selected and used for the experiments under two load scenarios. Femoral components with and without femoral stems were implanted in femurs with different notch sizes to predict experimentally the strain levels at the notch edge with the use of fiber Bragg gratings and at notch region with strain gauges.

Results

Despite the global strain reduction in stemmed condition, at the notch edge, the strain behavior was dissimilar for the different notch depths. For notch depths lower than 5 mm, the use of stem reduces the strain level at the notch edge to values below the intact femur condition, while for depths greater or equal to 5 mm, the strain levels at the notch edge were higher than the intact femur condition with values ranging from +10 to +189%.

Conclusions

The present study suggests the use of a prophylactic stem for notch depths greater than 5 mm. For notch depths below 5 mm, the fracture risk due to strain increase at the notch edge seems to be low in the stemless condition.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Gujarathi N, Putti AB, Abboud RJ, MacLean JG, Espley AJ, Kellett CF (2009) Risk of periprosthetic fracture after anterior femoral notching. Acta Orthop 80(5):553–556

    PubMed  Article  Google Scholar 

  2. 2.

    Aaron RK, Scott R (1987) Supracondylar fracture of the femur after total knee arthroplasty. Clin Orthop Relat Res 219:136–139

    PubMed  Google Scholar 

  3. 3.

    Figgie MP, Goldberg VM, Figgie HE, Sobel M (1990) The results of treatment of supracondylar fracture above total knee arthroplasty. J Arthroplasty 5:267–276

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Ritter M, Faris P, Keating E (1988) Anterior femoral notching and ipsilateral supracondylar femur fracture in total knee arthroplasty. J Arthroplasty 3:185–187

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Dennis DA (2001) Periprosthetic fractures following total knee arthroplasty. Instr Course Lect 50:379

    PubMed  CAS  Google Scholar 

  6. 6.

    Hirsh D, Bhalla S, Roffman M (1981) Supracondylar fracture of the femur following total knee replacement. Report of four cases. J Bone Joint Surg Am 63:162–163

    PubMed  CAS  Google Scholar 

  7. 7.

    Diehl P, Burgkart R, Klier T, Glowalla C, Gollwitzer H (2006) Periprosthetic fractures after total knee arthroplasty. Orthopade 35:961–974

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Althausen P, Lee M, Finkemeier C, Meehan J, Rodrigo J (2003) Operative stabilisation of supracondylar femur fractures above total knee arthroplasty. A comparison of four treatment methods. J Arthroplasty 18:834–839

    PubMed  Article  Google Scholar 

  9. 9.

    Su E, Dewal H, Cesare DIP (2004) Periprosthetic femoral fractures above total knee replacements. J Am Acad Orthop Surg 12:12–20

    PubMed  Google Scholar 

  10. 10.

    O’Toole R, Gobezie R, Hwang R, Chandler A, Smith R, Estok D 2nd, Vrahas M (2006) Low complication rate of LISS for femur fractures adjacent to stable hip or knee arthroplasty. Clin Orthop Relat Res 450:203–210

    PubMed  Article  Google Scholar 

  11. 11.

    Bogoch E, Hastings D, Gross A, Gschwend N (1988) Supracondylar fractures of the femur adjacent to resurfacing and MacIntosh arthroplasties of the knee in patients with rheumatoid arthritis. Clin Orthop relat Res 229:213–220

    PubMed  Google Scholar 

  12. 12.

    Ritter M, Thong A, Keating M, Faris P, Meding J, Berend M, Pierson J, Davis K (2005) The effect of femoral notching during total knee arthroplasty on the prevalence of postoperative femoral fractures and on clinical outcome. J Bone Joint Surg Am 87:2411–2414

    PubMed  Article  Google Scholar 

  13. 13.

    Cusick R, Lucas G, McQueen D, Graber C (2000) Construct stiffness of different fixation methods for supracondylar femoral fractures above total knee prosthesis. Am J Orthop 29:695–699

    PubMed  CAS  Google Scholar 

  14. 14.

    Parry B, Ganley T, Bortel D, Englund R, Cooney T (2000) In vitro analysis of periprosthetic strains following total knee arthroplasty. Orthopedics 23:1051–1056

    PubMed  CAS  Google Scholar 

  15. 15.

    Culp R, Schmidt R, Hanks G, Mak A, Esterhai J Jr, Heppenstal R (1987) Supracondylar fracture of the femur following periprosthetic knee arthroplasty. Clin Orthop Relat Res 222:212–222

    PubMed  Google Scholar 

  16. 16.

    Moran M, Brick G, Sledge C, Dysarth S, Chien E (1996) Supracondylar femoral fracture following total knee arthroplasty. Clin Orthop Relat Res 324:196–204

    PubMed  Article  Google Scholar 

  17. 17.

    Lesh M, Schneider D, Deol G, Davis B, Jacobs CR, Pellegrini V Jr (2000) The consequences of anterior femoral notching in total knee arthroplasty: a biomechanical study. J Bone Joint Surg 82A:b1096–b1101

    Google Scholar 

  18. 18.

    Shawen S, Belmont P Jr, Klemme W et al (2003) Osteoporosis and anterior femoral notching in periprosthetic supracondylar femoral fractures: a biomechanical analysis. J Bone Joint Surg Am 85-A:115–121

    Google Scholar 

  19. 19.

    Minoda Y, Kobayashi A, Iwaki H, Mitsuhiko I, Kadoya Y, Ohashi H, Takaoka K, Nakamura H (2010) The risk of notching the anterior femoral cortex with the use of navigation systems in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 18(6):718–722

    PubMed  Article  Google Scholar 

  20. 20.

    Heiner A (2008) Structural properties of fourth-generation composite femurs and tibias. J Biomech 41:3282–3284

    PubMed  Article  Google Scholar 

  21. 21.

    Gardner MP, Chong AC, Pollock AG, Wooley PH (2010) Mechanical evaluation of large-size fourth-generation composite femur and tibia models. Ann Biomed Eng 38(3):613–620

    PubMed  Article  Google Scholar 

  22. 22.

    Heinlein B, Kutzner I, Graichen F, Bender A, Rohlmann A, Halder AM, Beier A, Bergmann G (2009) Complete data of total knee replacement loading for level walking and stair climbing measured in vivo with a follow-up of 6–10 months. Clin Biomech 24(4):315–326

    Article  Google Scholar 

  23. 23.

    Matthews L, Sonstegard D, Henke J (1977) Load bearing characteristics of the patello-femoral joint. Acta Orthop Scand 48(5): 511–516

    Google Scholar 

  24. 24.

    Completo A, Fonseca F, Simões J (2007) Experimental validation of intact and implanted distal femur finite element models. J Biomech 40:2467–2476

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Nalla R, Kinney J, Ritchie R (2003) Mechanistic fracture criteria for the failure of human cortical bone. Nature Mater 2:164–168

    Article  CAS  Google Scholar 

  26. 26.

    Schileo E, Taddei F, Cristofolini L, Viceconti M (2008) Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro. J Biomech 41(2): 356–367

    Google Scholar 

  27. 27.

    Tharani R, Nakasone C, Vince K (2005) Periprosthetic fractures after total knee arthroplasty. J Arthroplasty 20:27–32

    PubMed  Article  Google Scholar 

  28. 28.

    Zalzal P, Backstein D, Gross A, Papini M (2006) Notching of the anterior femoral cortex during total knee arthroplasty characteristics—that increase local stresses. J Arthroplasty 21(5):737–743

    PubMed  Article  Google Scholar 

  29. 29.

    Martin R (2003) Fatigue damage, remodeling, and the minimization of skeletal weight. J Theor Biol 220(2):271–276

    PubMed  Article  Google Scholar 

  30. 30.

    Merkel KD, Johnson EW Jr (1986) Supracondylar fracture of the femur after total knee arthroplasty. J Bone Joint Surg Am 68:29–43

    PubMed  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Completo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Completo, A., Fonseca, F., Relvas, C. et al. Improved stability with intramedullary stem after anterior femoral notching in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 20, 487–494 (2012). https://doi.org/10.1007/s00167-011-1557-2

Download citation

Keywords

  • Femoral notching
  • Periprosthetic femur fracture
  • Experimental study
  • Intramedullary stem
  • Total knee arthroplasty