Skip to main content

Advertisement

Log in

Full knee extension magnetic resonance imaging for the evaluation of intercondylar roof impingement after anatomical double-bundle anterior cruciate ligament reconstruction

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The purpose of this study was to reveal the relationship between anatomically placed anterior cruciate ligament (ACL) graft and the intercondylar roof using magnetic resonance imaging (MRI).

Methods

Twenty patients undergoing anatomical double-bundle ACL reconstruction were included in this study. Anatomical double-bundle ACL reconstruction was performed with two femoral tunnels (antero-medial; AM and postero-lateral; PL) and two tibial tunnels. Hamstring autograft was used in all cases. More than 6 months after operation, MRI was performed with full knee extension. The relationship between the graft and the intercondylar roof was evaluated using an axial view of the T2 image at the most distal slice of the intercondylar roof. Qualitative evaluation of the ACL graft was performed with a sagittal view of the T2 image. Tunnel placement was evaluated with three-dimensional computed tomography (3D-CT) and radiographs. The extension angle of the knee was also evaluated with 3D-CT.

Results

In 12 subjects, the ACL graft touched the roof (Touch group) but no graft deformation was observed. In 8 subjects, no roof–graft contact was observed (Non-touch group). In 1 case, the ACL graft was bowed posteriorly. Signal intensity alteration of the graft was observed in 3 cases. No significant difference in femoral and tibial tunnel placement was observed between the Touch and Non-touch groups. All subjects attained full knee extension.

Conclusion

Although graft–roof impingement after anatomical double-bundle ACL reconstruction was suspected in some cases after the MRI evaluation, no extension loss in the knee was observed. In these suspected cases of impingement, long-term follow-up will be needed to determine the connection between any potential pathological effects. For the clinical relevance, MRI is an effective tool to determine the status of roof impingement in anatomical double-bundle ACL reconstruction.

Level of evidence

Case controlled study, Level III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ACL:

Anterior cruciate ligament

AM:

Antero-medial bundle

MRI:

Magnetic resonance imaging

PL:

Postero-lateral bundle

References

  1. Bencardino JT, Beltran J, Feldman MI, Rose DJ (2009) MR imaging of complications of anterior cruciate ligament graft reconstruction. Radiographics 29:2115–2126

    Article  PubMed  Google Scholar 

  2. Bernard M, Hertel P, Hornung H, Cierpinski TH (1997) Femoral insertion of the ACL: radiographic quadrant method. Am J Knee Surg 10:14–22

    PubMed  CAS  Google Scholar 

  3. Brophy RH, Selby RM, Altchek DW (2006) Anterior cruciate ligament revision: double-bundle augmentation of primary vertical graft. Arthroscopy 22:683 e1–683 e5

    Google Scholar 

  4. Buoncristiani AM, Tjoumakaris FP, Starman JS, Ferretti M, Fu FH (2006) Anatomic double-bundle anterior cruciate ligament reconstruction. Arthroscopy 22:1000–1006

    Article  PubMed  Google Scholar 

  5. Cuomo P, Edwards A, Giron F, Bull AMJ, Amis AA, Aglietti P (2006) Validation of the 65° howell guide for anterior cruciate ligament reconstruction. Arthroscopy 22:70–75

    Article  PubMed  Google Scholar 

  6. Darcy SP, Kilger RH, Woo SL, Debski RF (2006) Estimation of ACL forces by reproducing knee kinematics between sets of knees: a novel noninvasive methodology. J Biomech 39:2371–2377

    Article  PubMed  Google Scholar 

  7. Ferretti M, Ekdahl M, Shen W, Fu FH (2007) Osseous landmarks of the femoral attachment of the anterior cruciate ligament: an anatomic study. Arthroscopy 23:1218–1225

    Article  PubMed  Google Scholar 

  8. Fithian DC, Paxton EW, Stone ML et al (2005) Prospective trial of a treatment algorithm for the management of the anterior cruciate ligament-injured knee. Am J Sports Med 33:335–346

    Article  PubMed  Google Scholar 

  9. Fu FH, Bennett CH, Ma B, Menetrey J, Lattermann C (2000) Current trends in anterior cruciate ligament reconstruction: Part II. Operative procedures and clinical correlations. Am J Sports Med 28:124–130

    PubMed  CAS  Google Scholar 

  10. Fung DT, Zhang LQ (2003) Modeling of ACL impingement against the intercondylar notch. Clin Biomech 18:933–941

    Article  Google Scholar 

  11. Goss BC, Howell SM, Hull ML (1998) Quadriceps load aggravates and roofplasty mitigates active impingement of anterior cruciate ligament grafts against the intercondylar roof. J Orthopaed Res 16:611–617

    Article  CAS  Google Scholar 

  12. Goss BC, Hull ML, Howell SM (1997) Contact pressure and tension in anterior cruciate ligament grafts subjected to roof impingement during passive extension. J Orthopaed Res 15:263–268

    Article  CAS  Google Scholar 

  13. Griffin LY, Agel J, Albohm MJ et al (2000) Noncontact anterior cruciate ligament injuries. J Am Acad Orthop Surg 8:141–150

    PubMed  CAS  Google Scholar 

  14. Harner CD, Vogrin TM (2002) What’s new in sports medicine. J Bone Joint Surg Am 84:1095–1099

    PubMed  Google Scholar 

  15. Hame SL, Markolf KL, Hunter DM, Oakes DA, Zoric B (2003) Effects of notchplasty and femoral tunnel position on excursion patterns of an anterior cruciate ligament graft. Arthroscopy 19:340–345

    Article  PubMed  Google Scholar 

  16. Howell SM (1998) Principles for placing the tibial tunnel and avoiding roof impingement during reconstruction of a torn anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 6:S49–S55

    Article  PubMed  Google Scholar 

  17. Inoue M, Tokuyasu S, Kuwahara S et al (2010) Tunnel location in transparent 3-dimentional CT in anatomic double-bundle anterior cruciate ligament reconstruction with the trans-tibial technique. Knee Surg Sports Traumatol Arthrosc 18:1176–1183

    Article  PubMed  Google Scholar 

  18. Iriuchishima T, Tajima G, Ingham SJ et al (2009) Intercondylar roof impingement pressure after anterior cruciate ligament reconstruction in a porcine model. Knee Surg Sports Traumatol Arthrosc 17:590–594

    Article  PubMed  Google Scholar 

  19. Iriuchishima T, Ingham SJ, Tajima G et al (2010) Evaluation of the tunnel placement in the anatomical double-bundle ACL reconstruction: a cadaver study. Knee Surg Sports Traumatol Arthrosc 18:1226–1231

    Article  PubMed  Google Scholar 

  20. Iriuchishima T, Tajima G, Ingham SJ, Shen W, Smolinski P, Fu FH (2010) Impingement pressure in the anatomical and non anatomical anterior cruciate ligament reconstruction: a cadaver study. Am J Sports Med 38:1611–1617

    Article  PubMed  Google Scholar 

  21. Iriuchishima T, Horaguchi T, Kubomura T, Morimoto Y, Fu FH (2010) Evaluation of the intercondylar roof impingement after anatomical double-bundle anterior cruciate ligament reconstruction using 3D-CT. Knee Surg Sports Traumatol Arthrosc 19:674–679

    Google Scholar 

  22. Jagodzinski M, Leis A, Iselborn KW, Mall G, Nerlich M, Bosch U (2003) Impingement pressure and tension forces of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 11:85–90

    PubMed  CAS  Google Scholar 

  23. Jagodzinski M, Richter GM, Passler HH (2000) Biomechanical analysis of knee hyperextension and of the impingement of the anterior cruciate ligament: a cinematographic MRI study with impact on tibial tunnel positioning in anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 8:11–19

    Article  PubMed  CAS  Google Scholar 

  24. Loh JC, Fukuda Y, Tsuda E, Steadman RJ, Fu FH, Woo SL (2003) Knee stability and graft function following anterior cruciate ligament reconstruction: comparison between 11 o’clock and 10 o’clock femoral tunnel placement. Arthroscopy 19:297–304

    Article  PubMed  Google Scholar 

  25. Mae T, Shino K, Miyama T et al (2001) Single versus two-femoral socket anterior cruciate ligament reconstruction technique: biomechanical analysis using a robotic simulator. Arthroscopy 17:708–716

    Article  PubMed  CAS  Google Scholar 

  26. Muneta T, Koga H, Mochizuki T et al (2007) A prospective randomized study of 4-strand semitendinosus tendon anterior cruciate ligament reconstruction comparing single-bundle and double bundle techniques. Arthroscopy 23:618–628

    Article  PubMed  Google Scholar 

  27. Muneta T, Yamamoto H, Ishibashi T, Asahina S, Murakami S, Furuya K (1995) The effects of tibial tunnel placement and roofplasty on reconstructed anterior cruciate ligament knees. Arthroscopy 11:57–62

    Article  PubMed  CAS  Google Scholar 

  28. Papakonstantinou O, Chung CB, Chanchairujura K, Resnick DL (2003) Complications of anterior cruciate ligament reconstruction: MR imaging. Eur Radiol 13:1106–1117

    PubMed  Google Scholar 

  29. Simmons R, Howell SM, Hull ML (2003) Effect of the angle of the femoral and tibial tunnels in the coronal plane and incremental excision of the posterior cruciate ligament graft. J Bone Joint Surg Am 85A:1018–1029

    Google Scholar 

  30. Sonnery-Cottet B, Lavoie F, Ogasawasa R et al (2010) Clinical and operative characteristics of cyclops syndrome after double-bundle anterior cruciate ligament reconstruction. Arthroscopy 26:1483–1488

    Article  PubMed  Google Scholar 

  31. Staubli HU, Rauschning W (1994) Tibial attachment area of the anterior cruciate ligament in the extended knee position, anatomy and cryosections in vitro complemented by magnetic resonance arthrography in vivo. Knee Surg Sports Traumatol Arthrosc 2:138–146

    Article  PubMed  CAS  Google Scholar 

  32. Steiner ME, Murray MM, Rodeo SA (2008) Strategies to improve anterior cruciate ligament healing and graft placement. Am J Sports Med 36:176–189

    Article  PubMed  Google Scholar 

  33. Strobel MJ, Castillo RJ, Weiler A (2001) Reflex extension loss after anterior cruciate ligament reconstruction due to femoral “high noon” graft placement. Arthroscopy 17:408–411

    Article  PubMed  CAS  Google Scholar 

  34. Takeda Y, Sato R, Ogawa T, Fujii K, Naruse A (2009) In vivo magnetic resonance imaging measurement of tibiofemoral relation with different knee flexion angles after single- and double-bundle anterior cruciate ligament reconstructions. Arthroscopy 25:733–741

    Article  PubMed  Google Scholar 

  35. Yagi M, Wong EK, Kanamori A, Debski RE, Fu FH, Woo SL (2002) Biomechanical analysis of anatomic anterior cruciate ligament reconstruction. Am J Sports Med 30:660–666

    PubMed  Google Scholar 

  36. Yasuda K, Kondo E, Ichiyama H, Tanabe Y, Tohyama H (2006) Clinical evaluation of anatomic double-bundle anterior cruciate ligament reconstruction procedure using hamstring tendon grafts: comparisons among 3 different procedures. Arthroscopy 22:240–251

    Article  PubMed  Google Scholar 

  37. Zantop T, Wellmann M, Fu FH, Peterson W (2008) Tunnel positioning of anteromedial and posterolateral bundles in anatomic anterior cruciate ligament reconstruction: anatomic and radiographic findings. Am J Sports Med 36:65–72

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takanori Iriuchishima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iriuchishima, T., Shirakura, K., Horaguchi, T. et al. Full knee extension magnetic resonance imaging for the evaluation of intercondylar roof impingement after anatomical double-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 19 (Suppl 1), 22–28 (2011). https://doi.org/10.1007/s00167-011-1504-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-011-1504-2

Keywords

Navigation