The impact of a rectangular or trapezoidal flexion gap on the femoral component rotation in TKA

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Purpose

The influence of soft tissue balancing on femoral component rotation in the gap technique remains unclear. The present study therefore compared the reliability of femoral component rotation determined by rectangular and trapezoidal gaps in total knee arthroplasty (TKA) using a navigation-assisted gap-balancing technique. The study also determined the correlation between femoral component rotation and gap measurement.

Methods

This prospective study included 99 patients (108 knees) who underwent postoperative CT after TKA with the navigation-assisted gap-balancing technique. A trapezoidal flexion or extension gap was defined as a >3 mm difference between the medial and lateral sides in 90° flexion or extension. An outlier of femoral component rotation was defined as >3° deviation from the transepicondylar axis.

Results

Postoperative CT showed that the femoral component had a tendency to rotate externally, with a mean 1.88 ± 2.49° from the surgical transepicondylar axis. Outliers and mean values of femoral component rotation were similar in the trapezoidal and rectangular flexion/extension gap groups. The medial flexion gap (r = −0.49, P = 0.007) and flexion gap differences (r = −0.59, P = 0.027) showed statistically significant negative correlations with the femoral component rotation. Multiple linear regression analysis also showed that the femoral component rotation was independently related to the flexion gap difference (β = −0.27, P = 0.031).

Conclusion

In the gap technique, the rotation of the femoral component is affected more by the flexion gap than by the extension gap. However, neither the trapezoidal nor rectangular flexion gap influenced femoral component rotation.

Level of evidence

Prospective study, Level I.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Berger R, Crossett L, Jacobs J, Rubash H (1998) Malrotation causing patellofemoral complications after total knee arthroplasty. Clin Orthop Relat Res 356:144–153

    PubMed  Article  Google Scholar 

  2. 2.

    Berger RA, Rubash HE, Seel MJ, Thompson WH, Crossett LS (1993) Determining the rotational alignment of the femoral component in total knee arthroplasty using the epicondylar axis. Clin Orthop Relat Res 286:40–47

    PubMed  Google Scholar 

  3. 3.

    Chauhan SK, Scott RG, Breidahl W, Beaver RJ (2004) Computer-assisted knee arthroplasty versus a conventional jig-based technique. A randomised, prospective trial. J Bone Joint Surg Br 86:372–377

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Dorr LD, Boiardo RA (1986) Technical considerations in total knee arthroplasty. Clin Orthop Relat Res 205:5–11

    PubMed  Google Scholar 

  5. 5.

    Ewald FC (1989) The Knee Society total knee arthroplasty roentgenographic evaluation and scoring system. Clin Orthop Relat Res 248:9–12

    PubMed  Google Scholar 

  6. 6.

    Fehring TK (2000) Rotational malalignment of the femoral component in total knee arthroplasty. Clin Orthop Relat Res 380:72–79

    PubMed  Article  Google Scholar 

  7. 7.

    Gejo R, McGarry MH, Jun B-J, Hofer JK, Kimura T, Lee TQ (2010) Biomechanical effects of patellar positioning on intraoperative knee joint gap measurement in total knee arthroplasty. Clin Biomech 25:352–358

    Article  Google Scholar 

  8. 8.

    Griffin FM, Insall JN, Scuderi GR (1998) The posterior condylar angle in osteoarthritic knees. J Arthroplasty 13:812–815

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Hanada H, Whiteside LA, Steiger J, Dyer P, Naito M (2007) Bone landmarks are more reliable than tensioned gaps in TKA component alignment. Clin Orthop Relat Res 462:137–142

    PubMed  Article  Google Scholar 

  10. 10.

    Heesterbeek PJ, Jacobs WC, Wymenga AB (2009) Effects of the balanced gap technique on femoral component rotation in TKA. Clin Orthop Relat Res 467:1015–1022

    PubMed  Article  Google Scholar 

  11. 11.

    Insall JN, Binazzi R, Soudry M, Mestriner LA (1985) Total knee arthroplasty. Clin Orthop Relat Res 192:13–22

    PubMed  Google Scholar 

  12. 12.

    Kim TK, Chang CB, Kang YG, Chung BJ, Cho HJ, Seong SC (2010) Execution accuracy of bone resection and implant fixation in computer assisted minimally invasive total knee arthroplasty. Knee 17:23–28

    PubMed  Article  Google Scholar 

  13. 13.

    Lustig S, Lavoie F, Selmi TA, Servien E, Neyret P (2008) Relationship between the surgical epicondylar axis and the articular surface of the distal femur: an anatomic study. Knee Surg Sports Traumatol Arthrosc 16:674–682

    PubMed  Article  Google Scholar 

  14. 14.

    Matsumoto T, Mizuno K, Muratsu H, Tsumura N, Fukase N, Kubo S, Yoshiya S, Kurosaka M, Kuroda R (2007) Influence of intra-operative joint gap on post-operative flexion angle in osteoarthritis patients undergoing posterior-stabilized total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 15:1013–1018

    PubMed  Article  Google Scholar 

  15. 15.

    Matziolis G, Boenicke H, Pfiel S, Wassilew G, Perka C (2010) The gap technique does not rotate the femur parallel to the epicondylar axis. Arch Orthop Trauma Surg. doi:10.1007/s00402-010-1113-4

  16. 16.

    Siston RA, Patel JJ, Goodman SB, Delp SL, Giori NJ (2005) The variability of femoral rotational alignment in total knee arthroplasty. J Bone Joint Surg Am 87:2276–2280

    PubMed  Article  Google Scholar 

  17. 17.

    Stockl B, Nogler M, Rosiek R, Fischer M, Krismer M, Kessler O (2004) Navigation improves accuracy of rotational alignment in total knee arthroplasty. Clin Orthop Relat Res 426:180–186

    PubMed  Article  Google Scholar 

  18. 18.

    Viskontas DG, Skrinskas TV, Johnson JA, King GJ, Winemaker MJ, Chess DG (2007) Computer-assisted gap equalization in total knee arthroplasty. J Arthroplasty 22:334–342

    PubMed  Article  Google Scholar 

  19. 19.

    Walde TA, Bussert J, Sehmisch S, Balcarek P, Sturmer KM, Walde HJ, Frosch KH (2010) Optimized functional femoral rotation in navigated total knee arthroplasty considering ligament tension. Knee. doi:10.1016/j.knee.2009.12.001

  20. 20.

    Winemaker MJ (2002) Perfect balance in total knee arthroplasty: the elusive compromise. J Arthroplasty 17:2–10

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Yoshino N, Takai S, Ohtsuki Y, Hirasawa Y (2001) Computed tomography measurement of the surgical and clinical transepicondylar axis of the distal femur in osteoarthritic knees. J Arthroplasty 16:493–497

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Korea University Grants (K0500241).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Seung-Beom Han.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, D., Padhy, D., Park, J. et al. The impact of a rectangular or trapezoidal flexion gap on the femoral component rotation in TKA. Knee Surg Sports Traumatol Arthrosc 19, 1141–1147 (2011). https://doi.org/10.1007/s00167-011-1422-3

Download citation

Keywords

  • Total knee arthroplasty
  • Gap technique
  • Femoral component rotation
  • Computed tomography