Skip to main content
Log in

The effects of the synovium on chondrocyte growth: an experimental study

  • Experimental Study
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The objective of this study was to evaluate the effects of synovium on the proliferation of the cartilage tissue and chondrocytes using a rabbit knee model as an in vivo synovial culture medium.

Methods

Twelve New Zealand rabbits were used as the animal model in this investigation. Standard size chondral and osteochondral cartilage grafts were taken from, respectively, the left and right knees of all the animals. Two groups of 6 animals were formed: in Group I (synovium group), grafts were placed into the synovial tissue and in group II (patellar tendon group) behind the patellar tendon of the corresponding knees. After 4 months, samples were collected and evaluated macroscopically by measuring their dimensions (vertical = D1, horizontal = D2, and depth = D3) and volumes, and histologically by counting the chondrocyte number using camera lucida method.

Results

Macroscopically, the increase in average D1, D2, and D3 measurements and volume in the osteochondral specimens were significantly higher compared to the chondral specimens in both groups (P < 0.05). However, no significant difference was observed between the two groups in terms of macroscopic values. Histologically, the mean chondrocyte counts in osteochondral and chondral specimens for Group I (synovium) were 20.2 and 18.1, and for Group II (patellar tendon) were 18.7 and 15.6, respectively. The mean number of chondrocytes was found to be significantly higher in osteochondral specimens than that of chondral specimens in either group (P < 0.05). Overall average chondrocyte count was significantly higher for Group I compared to Group II (P < 0.05).

Conclusion

Transplantation of the cartilage grafts into the synovial tissue in rabbit knees significantly enhanced the chondrocyte production compared with the group where the grafts were transplanted into intra-articular patellar tendon. The results of this study indicate that native synovial tissue may have the potential to be used as an in vivo culture medium for osteochondral tissue growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alison M, Sarraf C (1998) Hepatic stem cells. J Hepatol 29:676–682

    Article  PubMed  CAS  Google Scholar 

  2. Amiel D, Coutts RD, Abel M, Stewart W, Harwood F, Akeson WH (1985) Rib perichondrial grafts for the repair of full-thickness articular-cartilage defects: a morphological and biochemical study in rabbits. J Bone Joint Surg Am 67:911–920

    PubMed  CAS  Google Scholar 

  3. Barrie HJ (1978) Intra-articular loose bodies regarded as organ cultures in vivo. J Pathol 125:163–169

    Article  PubMed  CAS  Google Scholar 

  4. Bert JM (1993) Role of abrasion arthroplasty and debridement in the management of osteoarthritis of the knee [review]. Rheum Dis Clin North Am 19:725–739

    PubMed  CAS  Google Scholar 

  5. Bi Y, Ehirchiou D, Kilts TM, Inkson CS, Embree MC, Sonoyama W, Li L, Leet AI, Seo BM, Zhang L, Shi S, Young MF (2007) Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med 13:1219–1227

    Article  PubMed  CAS  Google Scholar 

  6. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331:889–899

    Article  PubMed  CAS  Google Scholar 

  7. Chow JC, Hantes ME, Houle JB, Zalavras CG (2004) Arthroscopic autogenous osteochondral transplantation for treating knee cartilage defects: a 2- to 5-year follow-up study. Arthroscopy 20:681–690

    PubMed  Google Scholar 

  8. Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG (1997) Cartilage injuries: a review of 31, 516 knee arthroscopies. Arthroscopy 13:456–460

    Article  PubMed  CAS  Google Scholar 

  9. De Bari C, Dell’Accio F, Tyzanowski P, Luyten FP (2001) Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 44:1928–1942

    Article  PubMed  Google Scholar 

  10. Deasy BM, Jankowski RJ, Huard J (2001) Muscle-derived stem cells: characterization and potential for cell-mediated therapy. Blood Cells Mol Dis 27:924–933

    Article  PubMed  CAS  Google Scholar 

  11. Doherty PJ, Zhang H, Tremblay L, Manolopoulos V, Marshall KW (1998) Resurfacing of articular cartilage explants with genetically-modified human chondrocytes in vitro. Osteoarthritis Cartilage 6:153–159

    Article  PubMed  CAS  Google Scholar 

  12. Doral MN, Bozkurt M, Atay ÖA, Tetik O (2007) Other arthroscopic procedures for the treatment of chondral injuries of the knee joint. Acta Orthop Traumatol Turc 41(Suppl 2):93–97

    PubMed  Google Scholar 

  13. Fuller JA, Ghadially FN (1972) Ultrastructural observations on surgically produced partial-thickness defects in articular cartilage. Clin Orthop Relat Res 86:193–205

    Article  PubMed  CAS  Google Scholar 

  14. Gage FH (2000) Mammalian neural stem cells. Science 287:1433–1438

    Article  PubMed  CAS  Google Scholar 

  15. Grande DA, Pitman MI, Peterson L, Menche D, Klein M (1989) The repair of experimentally produced defects in rabbit articular cartilage by autologous chondrocyte transplantation. J Orthop Res 7:208–218

    Article  PubMed  CAS  Google Scholar 

  16. Heybeli N, Doral MN, Atay OA, Leblebicioğlu G, Uzümcügil A (2008) Intra-articular sodium hyaluronate injections after arthroscopic debridement for osteoarthritis of the knee: a prospective, randomized, controlled study. Acta Orthop Traumatol Turc 42:221–227

    Article  PubMed  Google Scholar 

  17. Hoikka VE, Jaroma HJ, Ritsila VA (1990) Reconstruction of the patellar articulation with periosteal grafts: 4-year follow-up of 13 cases. Acta Orthop Scand 61:36–39

    Article  PubMed  CAS  Google Scholar 

  18. Hunter W (1743) Of the structure and diseases of articular cartilages. Philos Trans R Soc Lond 42:514–521

    Google Scholar 

  19. Ichinose S, Muneta T, Koga H, Segawa Y, Tagami M, Tsuji K, Sekiya I (2010) Morphological differences during in vitro chondrogenesis of bone marrow, synovium-MSCs, and chondrocytes. Lab Invest 90(2):210–221

    Article  PubMed  Google Scholar 

  20. Jackson RW, Dieterichs C (2003) The results of arthroscopic lavage and debridement of osteoarthritic knees based on the severity of degeneration: a 4- to 6-year symptomatic follow-up. Arthroscopy 19:13–20

    Article  PubMed  Google Scholar 

  21. Jo CH, Ahn HJ, Kim HJ, Seong SC, Lee MC (2007) Surface characterization and chondrogenic differentiation of mesenchymal stromal cells derived from synovium. Cytotherapy 9:316–327

    Article  PubMed  CAS  Google Scholar 

  22. Kılıç E, Ceyhan T, Çetinkaya DU (2007) İnsan kemik iliği kaynaklı mezenkimal stromal hücrelerin kıkırdak ve kemik hücrelerine farklılaşma potansiyelinin değerlendirilmesi. Acta Orthop Traumatol Turc 41:295–330

    PubMed  Google Scholar 

  23. Kurth T, Hedborn E, Shintani N, Sugimoto M, Chen FH, Haspl M, Martinovic S, Hunziker EB (2007) Chondrogenic potential of human synovial mesenchymal stem cells in alginate. Osteoarthritis Cartilage 15:1178–1189

    Article  PubMed  CAS  Google Scholar 

  24. Lee KH, Song SU, Hwang TS (2001) Regeneration of hyaline cartilage by cell-mediated gene therapy using transforming growth factor beta 1-producing fibroblasts. Hum Gene Ther 12:1805–1813

    Article  PubMed  CAS  Google Scholar 

  25. Mankin HJ (1982) The response of articular cartilage to mechanical injury. J Bone Joint Surg Am 64:460–466

    PubMed  CAS  Google Scholar 

  26. Martin JA, Buckwalter JA (2003) The role of chondrocyte senescence in the pathogenesis of osteoarthritis and in limiting cartilage repair. J Bone Joint Surg Am 85(Suppl 2):106–110

    PubMed  Google Scholar 

  27. Matsusue Y, Yamamuro T, Hama H (1993) Arthroscopic multiple osteochondral transplantation to the chondral defect in the knee associated with anterior cruciate ligament disruption. Arthroscopy 9:318–321

    Article  PubMed  CAS  Google Scholar 

  28. Milgram JW (1977) The classification of loose bodies in human joints. Clin Orthop Rel Res 124:282–291

    Google Scholar 

  29. Miyamoto C, Matsumoto T, Sakimura K, Shindo H (2007) Osteogenic protein-1 with transforming growth factor-beta1: potent inducer of chondrogenesis of synovial mesenchymal stem cells in vitro. J Orthop Sci 12(6):555–561

    Article  PubMed  CAS  Google Scholar 

  30. Miyamoto A, Deie M, Yamasaki T, Nakamae A, Shinomiya R, Adachi N, Ochi M (2007) The role of synovium in repairing cartilage defects. Knee Surg Sports Traumatol Arthrosc 15:1083–1093

    Article  PubMed  Google Scholar 

  31. Mochizuki T, Muneta T, Sakaguchi Y, Nimura A, Yokoyama A, Koga H, Sekiya I (2006) Higher chondrogenic potential of fibrous synovium- and adipose synovium-derived cells compared with subcutaneous fat-derived cells: distinguishing properties of mesenchymal stem cells in humans. Arthritis Rheum 54:843–853

    Article  PubMed  CAS  Google Scholar 

  32. Namba RS, Mouth M, Sullivan KM, Le AX, Adzick NS (1998) Spontaneous repair of superficial defects in articular cartilage in a fetal lamb model. J Bone Joint Surg Am 80:4–10

    PubMed  CAS  Google Scholar 

  33. Newman AP (1998) Articular cartilage repair [review]. Am J Sports Med 26:309–324

    PubMed  CAS  Google Scholar 

  34. Nishimura K, Solchaga LA, Caplan AI, Yoo JU, Goldberg VM, Johnstone B (1999) Chondroprogenitor cells of synovial tissue. Arthritis Rheum 42:2631–2637

    Article  PubMed  CAS  Google Scholar 

  35. O’Driscoll SW (1998) The healing and regeneration of articular cartilage. J Bone Joint Surg Am 80:1795–1812

    PubMed  Google Scholar 

  36. Pelletier JP, Caron JP, Evans C, Robbins PD, Georgescu HI, Jovanovic D, Fernandes JC, Martel-Pelletier J (1997) In vivo suppression of early experimental osteoarthritis by interleukin-1 receptor antagonist using gene therapy. Arthritis Rheum 40:1012–1019

    Article  PubMed  CAS  Google Scholar 

  37. Peterson L (1996) Articular cartilage injuries treated with autologous chondrocyte transplantation in the human knee. Acta Orthop Belg 62(Suppl 1):196–200

    PubMed  Google Scholar 

  38. Prockop DJ (2003) Further proof of the plasticity of adult stem cells and their role in tissue repair. J Cell Biol 160:807–809

    Article  PubMed  CAS  Google Scholar 

  39. Sakaguchi Y, Sekiya I, Yagishita K, Muneta T (2005) Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum 52:2521–2529

    Article  PubMed  Google Scholar 

  40. Sargon MF, Mas N, Şenan S, Özdemir B, Çelik HH, Cumhur M (2003) Quantitative analysis of myelinated axons of commissural fibers in the rat brain. Anat Histol Embryol 32:141–144

    Article  PubMed  CAS  Google Scholar 

  41. Shirasawa S, Sekiya I, Sakaguchi Y, Yagishita K, Ichinose S, Muneta T (2006) In vitro chondrogenesis of human synovium-derived mesenchymal stem cells: optimal condition and comparison with bone marrow-derived cells. J Cell Biochem 97:84–97

    Article  PubMed  CAS  Google Scholar 

  42. Steadman JR, Rodkey WG, Briggs KK, Rodrigo JJ (1999) The microfracture technique in the management of complete cartilage defects in the knee joint. Orthopede 28(1):26–32

    CAS  Google Scholar 

  43. Sumen Y, Ochi M, Ikuta Y (1995) Treatment of articular defects with meniscal allografts in a rabbit knee model. Arthroscopy 11:185–193

    Article  PubMed  CAS  Google Scholar 

  44. Swieszkowski W, Tuan BHS, Kurzydlowski KJ, Hutmacher DW (2007) Repair and regeneration of osteochondral defects in the articular joints. Biomol Eng 24:489–495

    Article  PubMed  CAS  Google Scholar 

  45. Williams GM, Klisch SM, Sah RL (2008) Bioengineering cartilage growth, maturation and form. Pediatr Res 63:527–534

    Article  PubMed  Google Scholar 

  46. Yoshimura H, Muneta T, Nimura A, Yokoyama A, Koga H, Sekiya I (2007) Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue and muscle. Cell Tissue Res 327:449–461

    Article  PubMed  CAS  Google Scholar 

  47. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by funds from the Hacettepe University, the Center of Scientific Researches. We wish to thank Reha ALPAR PhD Prof. and Sevilay KARAHAN PhD for the biostatistical evaluations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmut Nedim Doral.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bilge, O., Doral, M.N., Atesok, K. et al. The effects of the synovium on chondrocyte growth: an experimental study. Knee Surg Sports Traumatol Arthrosc 19, 1214–1223 (2011). https://doi.org/10.1007/s00167-010-1391-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-010-1391-y

Keywords

Navigation