Skip to main content
Log in

ACL mismatch reconstructions: influence of different tunnel placement strategies in single-bundle ACL reconstructions on the knee kinematics

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

To evaluate the influence of tibial and femoral tunnel position in ACL reconstruction on knee kinematics, we compared ACL reconstruction with a tibial and femoral tunnel in anteromedial (AM-AM reconstruction) and in posterolateral footprint (PL-PL reconstruction) with a reconstruction technique with tibial posterolateral and femoral anteromedial tunnel placement (PL-AM reconstruction). In 9 fresh-frozen human cadaveric knees, the knee kinematics under simulated Lachman (134 N anterior tibial load) and a simulated pivot shift test (10 N/m valgus and 4 N/m internal tibial torque) were determined at 0°, 30°, 60°, and 90° of flexion. Kinematics were recorded for intact, ACL-deficient, and single-bundle ACL reconstructed knees using three different reconstruction strategies in randomized order: (1) PL-AM, (2) AM-AM and (3) PL-PL reconstructions. Under simulated Lachman test, single-bundle PL-AM reconstruction and PL-PL reconstructions both showed significantly increased anterior tibial translation (ATT) at 60° and 90° when compared to the intact knee. At all flexion angles, AM-AM reconstruction did not show any statistical significant differences in ATT compared to the intact knee. Under simulated pivot shift, PL-AM reconstruction resulted in significantly higher ATT at 0°, 30°, and 60° knee flexion and AM-AM reconstructions showed significantly higher ATT at 30° compared to the intact knee. PL-PL reconstructions did not show any significant differences to the intact knee. AM-AM reconstructions restore the intact knee kinematics more closely when compared to a PL-AM technique resembling a transtibial approach. PL-PL reconstructions showed increased ATT at higher flexion angles, however, secured the rotational stability at all flexion angles. Due to the independent tibial and femoral tunnel location, a medial portal technique may be superior to a transtibial approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anderson AF, Dome DC, Gautam S, Awh MH, Rennirt GW (2001) Correlation of anthropometric measurements, strength, anterior cruciate ligament size, and intercondylar notch characteristics to sex differences in anterior cruciate ligament tear rates. Am J Sports Med 29:58–66

    CAS  PubMed  Google Scholar 

  2. Aune AK, Holm I, Risberg MA, Jensen HK, Steen H (2001) Four-strand hamstring tendon autograft compared with patellar tendon-bone autograft for anterior cruciate ligament reconstruction. A randomized study with two-year follow-up. Am J Sports Med 29:722–728

    CAS  PubMed  Google Scholar 

  3. Beynnon BD, Johnson RJ, Abate JA, Fleming BC, Nichols CE (2005) Treatment of anterior cruciate ligament injuries, part I. Am J Sports Med 33:1579–1602

    Article  PubMed  Google Scholar 

  4. Beynnon BD, Johnson RJ, Fleming BC, Kannus P, Kaplan M, Samani J, Renstrom P (2002) Anterior cruciate ligament replacement: comparison of bone-patellar tendon-bone grafts with two-strand hamstring grafts. A prospective, randomized study. J Bone Joint Surg Am 84A:1503–1513

    Google Scholar 

  5. Brown FM Jr (1996) Anterior cruciate ligament reconstruction as an outpatient procedure. Orthop Nurs 15:15–20 quiz 21

    Article  PubMed  Google Scholar 

  6. Carlin GJ, Livesay GA, Harner CD, Ishibashi Y, Kim HS, Woo SL (1996) In situ forces in the human posterior cruciate ligament in response to posterior tibial loading. Ann Biomed Eng 24:193–197

    Article  CAS  PubMed  Google Scholar 

  7. Chhabra A, Kline AJ, Nilles KM, Harner CD (2006) Tunnel expansion after anterior cruciate ligament reconstruction with autogenous hamstrings: a comparison of the medial portal and transtibial techniques. Arthroscopy 22:1107–1112

    Article  PubMed  Google Scholar 

  8. Colvin AC, Shen W, Musahl V, Fu FH (2009) Avoiding pitfalls in anatomic ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 17:956–963

    Article  PubMed  Google Scholar 

  9. Dargel J, Schmidt-Wiethoff R, Fischer S, Mader K, Koebke J, Schneider T (2009) Femoral bone tunnel placement using the transtibial tunnel or the anteromedial portal in ACL reconstruction: a radiographic evaluation. Knee Surg Sports Traumatol Arthrosc 17:220–227

    Article  PubMed  Google Scholar 

  10. Diermann N, Schumacher T, Schanz S, Raschke MJ, Petersen W, Zantop T (2009) Rotational instability of the knee: internal tibial rotation under a simulated pivot shift test. Arch Orthop Trauma Surg 129:353–358

    Article  PubMed  Google Scholar 

  11. Ekdahl M, Nozaki M, Ferretti M, Tsai A, Smolinski P, Fu FH (2009) The effect of tunnel placement on bone-tendon healing in anterior cruciate ligament reconstruction in a goat model. Am J Sports Med 37:1522–1530

    Article  PubMed  Google Scholar 

  12. Freedman KB, D’Amato MJ, Nedeff DD, Kaz A, Bach BR Jr (2003) Arthroscopic anterior cruciate ligament reconstruction: a metaanalysis comparing patellar tendon and hamstring tendon autografts. Am J Sports Med 31:2–11

    PubMed  Google Scholar 

  13. Fujie H, Livesay GA, Fujita M, Woo SL (1996) Forces and moments in six-DOF at the human knee joint: mathematical description for control. J Biomech 29:1577–1585

    CAS  PubMed  Google Scholar 

  14. Gabriel MT, Wong EK, Woo SL, Yagi M, Debski RE (2004) Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads. J Orthop Res 22:85–89

    Article  PubMed  Google Scholar 

  15. Giffin JR, Vogrin TM, Zantop T, Woo SL, Harner CD (2004) Effects of increasing tibial slope on the biomechanics of the knee. Am J Sports Med 32:376–382

    Article  PubMed  Google Scholar 

  16. Giron F, Cuomo P, Aglietti P, Bull AM, Amis AA (2006) Femoral attachment of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 14:250–256

    Article  PubMed  Google Scholar 

  17. Harner CD, Baek GH, Vogrin TM, Carlin GJ, Kashiwaguchi S, Woo SL (1999) Quantitative analysis of human cruciate ligament insertions. Arthroscopy 15:741–749

    Article  CAS  PubMed  Google Scholar 

  18. Harner CD, Janaushek MA, Kanamori A, Yagi M, Vogrin TM, Woo SL (2000) Biomechanical analysis of a double-bundle posterior cruciate ligament reconstruction. Am J Sports Med 28:144–151

    CAS  PubMed  Google Scholar 

  19. Harner CD, Vogrin TM (2002) What’s new in sports medicine. J Bone Joint Surg Am 84A:1095–1099

    Google Scholar 

  20. Ho JY, Gardiner A, Shah V, Steiner ME (2009) Equal kinematics between central anatomic single-bundle and double-bundle anterior cruciate ligament reconstructions. Arthroscopy 25:464–472

    Article  PubMed  Google Scholar 

  21. Hoshino Y, Nagamune K, Yagi M, Araki D, Nishimoto K, Kubo S, Minoru D, Kurosaka M, Kuroda R (2009) The effect of intra-operative knee flexion angle on determination of graft location in the anatomic double-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 17:1052–1060

    Article  PubMed  Google Scholar 

  22. Howell SM (1998) Principles for placing the tibial tunnel and avoiding roof impingement during reconstruction of a torn anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 6:S49–S55

    Article  PubMed  Google Scholar 

  23. Howell SM, Wallace MP, Hull ML, Deutsch ML (1999) Evaluation of the single-incision arthroscopic technique for anterior cruciate ligament replacement. A study of tibial tunnel placement, intraoperative graft tension, and stability. Am J Sports Med 27:284–293

    CAS  PubMed  Google Scholar 

  24. Jepsen CF, Lundberg-Jensen AK, Faunoe P (2007) Does the position of the femoral tunnel affect the laxity or clinical outcome of the anterior cruciate ligament-reconstructed knee? A clinical, prospective, randomized, double-blind study. Arthroscopy 23:1326–1333

    Article  PubMed  Google Scholar 

  25. Kanamori A, Zeminski J, Rudy TW, Li G, Fu FH, Woo SL (2002) The effect of axial tibial torque on the function of the anterior cruciate ligament: a biomechanical study of a simulated pivot shift test. Arthroscopy 18:394–398

    Article  PubMed  Google Scholar 

  26. Kato Y, Ingham SJ, Kramer S, Smolinski P, Saito A, Fu FH (2010) Effect of tunnel position for anatomic single-bundle ACL reconstruction on knee biomechanics in a porcine model. Knee Surg Sports Traumatol Arthrosc 18:2–10

    Google Scholar 

  27. Kocher MS, Steadman JR, Briggs KK, Sterett WI, Hawkins RJ (2004) Relationships between objective assessment of ligament stability and subjective assessment of symptoms and function after anterior cruciate ligament reconstruction. Am J Sports Med 32:629–634

    Article  PubMed  Google Scholar 

  28. Lenschow S, Zantop T, Weimann A, Lemburg T, Raschke M, Strobel M, Petersen W (2006) Joint kinematics and in situ forces after single bundle PCL reconstruction: a graft placed at the center of the femoral attachment does not restore normal posterior laxity. Arch Orthop Trauma Surg 126:253–259

    Article  PubMed  Google Scholar 

  29. Loh JC, Fukuda Y, Tsuda E, Steadman RJ, Fu FH, Woo SL (2003) Knee stability, graft function following anterior cruciate ligament reconstruction: comparison between 11 o’clock, 10 o’clock femoral tunnel placement. 2002 Richard O’Connor Award paper. Arthroscopy 19:297–304

    Article  PubMed  Google Scholar 

  30. Morgan CD, Kalman VR, Grawl DM (1995) Definitive landmarks for reproducible tibial tunnel placement in anterior cruciate ligament reconstruction. Arthroscopy 11:275–288

    Article  CAS  PubMed  Google Scholar 

  31. Musahl V, Plakseychuk A, VanScyoc A, Sasaki T, Debski RE, McMahon PJ, Fu FH (2005) Varying femoral tunnels between the anatomical footprint and isometric positions: effect on kinematics of the anterior cruciate ligament-reconstructed knee. Am J Sports Med 33:712–718

    Article  PubMed  Google Scholar 

  32. Petersen W, Tretow H, Weimann A, Herbort M, Fu FH, Raschke M, Zantop T (2007) Biomechanical evaluation of two techniques for double-bundle anterior cruciate ligament reconstruction: one tibial tunnel versus two tibial tunnels. Am J Sports Med 35:228–234

    Article  PubMed  Google Scholar 

  33. Petersen W, Zantop T (2007) Anatomy of the anterior cruciate ligament with regard to its two bundles. Clin Orthop Relat Res 454:35–47

    Article  PubMed  Google Scholar 

  34. Rudy TW, Livesay GA, Woo SL, Fu FH (1996) A combined robotic/universal force sensor approach to determine in situ forces of knee ligaments. J Biomech 29:1357–1360

    Article  CAS  PubMed  Google Scholar 

  35. Shelbourne KD, Patel DV (1995) Timing of surgery in anterior cruciate ligament-injured knees. Knee Surg Sports Traumatol Arthrosc 3:148–156

    Article  CAS  PubMed  Google Scholar 

  36. Woo SL, Debski RE, Withrow JD, Janaushek MA (1999) Biomechanics of knee ligaments. Am J Sports Med 27:533–543

    CAS  PubMed  Google Scholar 

  37. Woo SL, Debski RE, Wong EK, Yagi M, Tarinelli D (1999) Use of robotic technology for diathrodial joint research. J Sci Med Sport 2:283–297

    Article  CAS  PubMed  Google Scholar 

  38. Woo SL, Fisher MB (2009) Evaluation of knee stability with use of a robotic system. J Bone Joint Surg Am 91(Suppl 1):78–84

    Article  PubMed  Google Scholar 

  39. Woo SL, Kanamori A, Zeminski J, Yagi M, Papageorgiou C, Fu FH (2002) The effectiveness of reconstruction of the anterior cruciate ligament with hamstrings and patellar tendon. A cadaveric study comparing anterior tibial and rotational loads. J Bone Joint Surg Am 84A:907–914

    Google Scholar 

  40. Yagi M, Wong EK, Kanamori A, Debski RE, Fu FH, Woo SL (2002) Biomechanical analysis of an anatomic anterior cruciate ligament reconstruction. Am J Sports Med 30:660–666

    PubMed  Google Scholar 

  41. Yunes M, Richmond JC, Engels EA, Pinczewski LA (2001) Patellar versus hamstring tendons in anterior cruciate ligament reconstruction: a meta-analysis. Arthroscopy 17:248–257

    Article  PubMed  Google Scholar 

  42. Zaffagnini S, Bruni D, Martelli S, Imakiire N, Marcacci M, Russo A (2008) Double-bundle ACL reconstruction: influence of femoral tunnel orientation in knee laxity analysed with a navigation system—an in vitro biomechanical study. BMC Musculoskelet Disord 9:25

    Article  PubMed  Google Scholar 

  43. Zantop T, Diermann N, Schumacher T, Schanz S, Fu FH, Petersen W (2008) Anatomical and nonanatomical double-bundle anterior cruciate ligament reconstruction: importance of femoral tunnel location on knee kinematics. Am J Sports Med 36:678–685

    Article  PubMed  Google Scholar 

  44. Zantop T, Herbort M, Raschke MJ, Fu FH, Petersen W (2007) The role of the anteromedial and posterolateral bundles of the anterior cruciate ligament in anterior tibial translation and internal rotation. Am J Sports Med 35:223–227

    Article  PubMed  Google Scholar 

  45. Zantop T, Lenschow S, Lemburg T, Weimann A, Petersen W (2004) Soft-tissue graft fixation in posterior cruciate ligament reconstruction: evaluation of the effect of tibial insertion site on joint kinematics and in situ forces using a robotic/UFS testing system. Arch Orthop Trauma Surg 124:614–620

    Article  PubMed  Google Scholar 

  46. Zantop T, Petersen W, Sekiya JK, Musahl V, Fu FH (2006) Anterior cruciate ligament anatomy and function relating to anatomical reconstruction. Knee Surg Sports Traumatol Arthrosc 14:982–992

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by outside funding or grant from the German Speaking Arthroscopy Association (AGA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirco Herbort.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herbort, M., Lenschow, S., Fu, F.H. et al. ACL mismatch reconstructions: influence of different tunnel placement strategies in single-bundle ACL reconstructions on the knee kinematics. Knee Surg Sports Traumatol Arthrosc 18, 1551–1558 (2010). https://doi.org/10.1007/s00167-010-1163-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-010-1163-8

Keywords

Navigation