Skip to main content

Advertisement

Log in

Human ankle cartilage deformation after different in vivo impact conditions

  • Ankle
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Recently, the general finding of increased ankle cartilage stiffness to loading has been challenged, suggesting the need for the investigation of different in vivo loading conditions. Therefore, the objectives of the present study were to determine ankle (talar) cartilage deformation after in vivo loading using 3D volume change calculation and to establish any difference in volume change between four weight-bearing exercises. The four exercises represented increasing impact (bilateral knee bends <unilateral knee bends <drop jumps) as well as two types of loading: dynamic and static loading (i.e. unilateral knee bends and unilateral static stance). Based on MRI, 3D reconstructions of talar cartilage were generated to determine 3D volumes before and after four exercises in 13 healthy subjects (bilateral and unilateral knee bends, static unilateral stance, drop jumps). Mean talar deformation (volume decrease) was 8.3% after bilateral knee bends (P = 0.001), 7.7% after unilateral knee bends (P = 0.020), 14.6% after unilateral static stance (P < 0.001), 12.5% after drop jumps (P = 0.001). Statistical analysis also revealed deformation to be significantly higher after unilateral static stance than after unilateral knee bends (P = 0.017). These results suggest that talar cartilage endures substantial deformation during in vivo loading characterized by more deformation (i.e. higher volume change) after static than after dynamic loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bingham JT, Papannagari R, Van de Velde SK, Gross C, Gill TJ, Felson DT, Rubash HE, Li G (2008) In vivo cartilage contact deformation in the healthy human tibiofemoral joint. Rheumatology (Oxford) 47:1622–1627

    Article  CAS  Google Scholar 

  2. Boocock M, McNair P, Cicuttini F, Stuart A, Sinclair T (2009) The short-term effects of running on the deformation of knee articular cartilage and its relationship to biomechanical loads at the knee. Osteoarthritis Cartilage 17:883–890

    Article  CAS  PubMed  Google Scholar 

  3. Daniels T, Thomas R (2008) Etiology and biomechanics of ankle arthritis. Foot Ankle Clin 13:341–352

    Article  PubMed  Google Scholar 

  4. Eckstein F, Cicuttini F, Raynauld JP, Waterton JC, Peterfy C (2006) Magnetic resonance imaging (MRI) of articular cartilage in knee osteoarthritis (OA): morphological assessment. Osteoarthritis Cartilage 14(Suppl A):A46–A75

    Article  PubMed  Google Scholar 

  5. Eckstein F, Lemberger B, Gratzke C, Hudelmaier M, Glaser C, Englmeier KH, Reiser M (2005) In vivo cartilage deformation after different types of activity and its dependence on physical training status. Ann Rheum Dis 64:291–295

    Article  CAS  PubMed  Google Scholar 

  6. Eckstein F, Lemberger B, Stammberger T, Englmeier KH, Reiser M (2000) Patellar cartilage deformation in vivo after static versus dynamic loading. J Biomech 33:819–825

    Article  CAS  PubMed  Google Scholar 

  7. Eckstein F, Reiser M, Englmeier KH, Putz R (2001) In vivo morphometry and functional analysis of human articular cartilage with quantitative magnetic resonance imaging–from image to data. from data to theory Anat Embryol (Berl) 203:147–173

    Article  CAS  Google Scholar 

  8. Fetter NL, Leddy HA, Guilak F, Nunley JA (2006) Composition and transport properties of human ankle and knee cartilage. J Orthop Res 24:211–219

    Article  PubMed  Google Scholar 

  9. Herberhold C, Faber S, Stammberger T, Steinlechner M, Putz R, Englmeier KH, Reiser M, Eckstein F (1999) In situ measurement of articular cartilage deformation in intact femoropatellar joints under static loading. J Biomech 32:1287–1295

    Article  CAS  PubMed  Google Scholar 

  10. Hendren L, Beeson P (2009) A review of the differences between normal and osteoarthritis articular cartilage in human knee and ankle joints. Foot (Edinb) 19:171–176

    Google Scholar 

  11. Huch K, Kuettner KE, Dieppe P (1997) Osteoarthritis in ankle and knee joints. Semin Arthritis Rheum 26:667–674

    Article  CAS  PubMed  Google Scholar 

  12. Hudelmaier M, Glaser C, Hohe J, Englmeier KH, Reiser M, Putz R, Eckstein F (2001) Age-related changes in the morphology and deformational behavior of knee joint cartilage. Arthritis Rheum 44:2556–2561

    Article  CAS  PubMed  Google Scholar 

  13. Kessler MA, Glaser C, Tittel S, Reiser M, Imhoff AB (2006) Volume changes in the menisci and articular cartilage of runners: an in vivo investigation based on 3-D magnetic resonance imaging. Am J Sports Med 34:832–836

    Article  PubMed  Google Scholar 

  14. Kleipool RP, Blankevoort L (2010) The relation between geometry and function of the ankle joint complex: a biomechanical review. Knee Surg Sports Traumatol Arthrosc 18(5):618–627

    Google Scholar 

  15. Koepp H, Eger W, Muehleman C, Valdellon A, Buckwalter JA, Kuettner KE, Cole AA (1999) Prevalence of articular cartilage degeneration in the ankle and knee joints of human organ donors. J Orthop Sci 4:407–412

    Article  CAS  PubMed  Google Scholar 

  16. Kuettner KE, Cole AA (2005) Cartilage degeneration in different human joints. Osteoarthritis Cartilage 13:93–103

    Article  CAS  PubMed  Google Scholar 

  17. Li G, Wan L, Kozanek M (2008) Determination of real-time in vivo cartilage contact deformation in the ankle joint. J Biomech 41:128–136

    Article  CAS  PubMed  Google Scholar 

  18. Lyyra T, Kiviranta I, Vaatainen U, Helminen HJ, Jurvelin JS (1999) In vivo characterization of indentation stiffness of articular cartilage in the normal human knee. J Biomed Mater Res 48:482–487

    Article  CAS  PubMed  Google Scholar 

  19. Matricali GA, Bartels W, Labey L, Dereymaeker GP, Luyten FP, Vander Sloten J (2009) High inter-specimen variability of baseline data for the tibio-talar contact area. Clin Biomech (Bristol, Avon) 24:117–120

    Article  Google Scholar 

  20. Mow VC, Holmes MH, Lai WM (1984) Fluid transport and mechanical properties of articular cartilage: a review. J Biomech 17:377–394

    Article  CAS  PubMed  Google Scholar 

  21. Schumacher BL, Su JL, Lindley KM, Kuetttner KE, Cole AA (2002) Horizontally oriented clusters of multiple chondrons in the superficial zone of ankle, but not knee articular cartilage. Anat Rec 266:241–248

    Article  PubMed  Google Scholar 

  22. Seedhom BB (2006) Conditioning of cartilage during normal activities is an important factor in the development of osteoarthritis. Rheumatology (Oxford) 45:146–149

    Article  CAS  Google Scholar 

  23. Sitoci K, Hudelmaier M, Glaser C et al (2003) Noctural changes of cartilage morphology in healthy subjects. Osteoarthritis and Cartilage 11:S95

    Google Scholar 

  24. Suh JK, Li Z, Woo SL (1995) Dynamic behavior of a biphasic cartilage model under cyclic compressive loading. J Biomech 28:357–364

    Article  CAS  PubMed  Google Scholar 

  25. Suckel A, Muller O, Wachter N, Kluba T (2010) In vitro measurement of intraarticular pressure in the ankle joint. Knee Surg Sports Traumatol Arthrosc 18(5):664–668

    Google Scholar 

  26. Treppo S, Koepp H, Quan EC, Cole AA, Kuettner KE, Grodzinsky AJ (2000) Comparison of biomechanical and biochemical properties of cartilage from human knee and ankle pairs. J Orthop Res 18:739–748

    Article  CAS  PubMed  Google Scholar 

  27. van Dijk CN, Reilingh ML, Zengerink M, van Bergen CJA (2010) Osteochondral defects in the ankle: why painful?. Knee Surg Sports Traumatol Arthrosc 18(5):570–580

    Google Scholar 

  28. Wan L, de Asla RJ, Rubash HE, Li G (2008) In vivo cartilage contact deformation of human ankle joints under full body weight. J Orthop Res 26:1081–1089

    Article  PubMed  Google Scholar 

  29. Waterton JC, Solloway S, Foster JE, Keen MC, Gandy S, Middleton BJ, Maciewicz RA, Watt I, Dieppe PA, Taylor CJ (2000) Diurnal variation in the femoral articular cartilage of the knee in young adult humans. Magn Reson Med 43:126–132

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was partly funded by Bijzonder Onderzoeksfonds (BOF, special research fund; B/08320/02), Ghent University and by Fonds voor Wetenschappelijk Onderzoek-Vlaanderen (FWO-Vlaanderen; Research Foundation-Flanders).

Conflicts of interest statement

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ans Van Ginckel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Ginckel, A., Almqvist, F., Verstraete, K. et al. Human ankle cartilage deformation after different in vivo impact conditions. Knee Surg Sports Traumatol Arthrosc 19, 137–143 (2011). https://doi.org/10.1007/s00167-010-1159-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-010-1159-4

Keywords

Navigation