Skip to main content
Log in

Collagen fibre arrangement and functional crimping pattern of the medial collateral ligament in the rat knee

  • Experimental Study
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Ligaments have been described as multifascicular structures with collagen fibres cross-connecting to each other or running straight and parallel also showing a waviness or crimping pattern playing as a shock absorber/recoiling system during joint motions. A particular collagen array and crimping pattern in different ligaments may reflect different biomechanical roles and properties. The aim of the study was to relate the 3D collagen arrangement in the crimping pattern of the medial collateral ligament (MCL) to its functional role. The MCL is one of the most injured ligaments during sports activities and an experimental model to understand the rate, quality and composition of ligaments healing. A deep knowledge of structure–function relationship of collagen fibres array will improve the development of rehabilitation protocols and more appropriate exercises for recovery of functional activity. The rat MCL was analysed by polarized light microscopy, confocal laser microscopy and scanning electron microscopy (SEM). Histomorphometric analysis demonstrated that MCL crimps have a smaller base length versus other tendons. SEM observations demonstrated that collagen fibres showing few crimps were composed of fibrils intertwining and crossing one another in the outer region. Confocal laser analyses excluded a helical array of collagen fibres. By contrast, in the core portion, densely packed straight collagen fibres ran parallel to the main axis of the ligament being interrupted both by planar crimps, similar to tendon crimps, and by newly described right-handed twisted crimps. It is concluded that planar crimps could oppose or respond exclusively to tensional forces parallel to the main ligament axis, whereas the right-handed twisted crimps could better resist/respond to a complex of tensional/rotational forces within the ligament thus opposing to an external rotation of tibia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ali AF, Reda Taha MM, Thornton GM, Shrive NG, Frank CB (2005) Biomechanical study using fuzzy systems to quantify collagen fiber recruitment and predict creep of the rabbit medial collateral ligament. J Biomech Eng 127:485–493

    Article  Google Scholar 

  2. Benjamin M, Qin S, Ralphs JR (1995) Fibrocartilage associated with human tendons and their pulleys. J Anat 187:625–633

    PubMed  Google Scholar 

  3. Bianchini P, Diaspro A (2008) Three-dimensional (3D) backward and forward second harmonic generation (SHG) microscopy of biological tissues. J Biophoton 1:443–450

    Article  Google Scholar 

  4. Binkley JM, Peat M (1986) The effects of immobilization on the ultrastructure and mechanical properties of the medial collateral ligament of rats. Clin Orthop Relat Res 203:301–308

    PubMed  Google Scholar 

  5. Bland YS, Ashhurst DE (1996) Changes in the distribution of fibrillar collagens in the collateral and cruciate ligaments of the rabbit knee joint during fetal and postnatal development. Histochem J 28:325–334

    Article  CAS  PubMed  Google Scholar 

  6. Butler D, Kay MD, Stouffer DC (1986) Comparison of material properties in fascicle-bone units from human patellar tendon and knee ligaments. J Biomech 19:425–432

    Article  CAS  PubMed  Google Scholar 

  7. Csintalan RP, Ehsan A, McGarry MH, Fithian DF, Lee TQ (2006) Biomechanical and anatomical effects of an external rotation torque applied to the knee. A cadaveric study. Am J Sports Med 34:1623–1629

    Article  PubMed  Google Scholar 

  8. Danylchuk KD, Finlay JB, Krcek JP (1978) Microstructural organization of human and bovine cruciate ligaments. Clin Orthop Relat Res 131:294–298

    PubMed  Google Scholar 

  9. Dargel J, Gotter M, Mader K, Penning D, Koebke J, Schmidt-Wiethoff R (2007) Biomechanics of the anterior cruciate ligament and implications for surgical reconstruction. Strat Trauma Limb Reconstr 2:1–12

    Article  CAS  Google Scholar 

  10. Diamant J, Keller A, Baer E, Litt M, Arridge RG (1972) Collagen: ultrastructure and its relation to mechanical properties as a function of ageing. Proc R Soc B 180:293–315

    Article  CAS  Google Scholar 

  11. Doillon CJ, Dunn MG, Bender E, Silver FH (1985) Collagen fiber formation in repair tissue: development of strength and toughness. Collagen Res Relat 5:481–492

    CAS  Google Scholar 

  12. Duthon VB, Barea C, Abrassart S, Fasel JH, Fritschy D, Menetrey J (2006) Anatomy of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthoscop 14:204–213

    Article  CAS  Google Scholar 

  13. Franchi M, Fini M, Quaranta M, De Pasquale V, Raspanti M, Giavaresi G, Ottani V, Ruggeri A (2007) Crimp morphology in relaxed and stretched rat Achilles tendon. J Anat 210:1–7

    Article  PubMed  Google Scholar 

  14. Franchi M, Quaranta M, Macciocca M, De Pasquale V, Ottani V, Ruggeri A (2009) Structure relates to elastic recoil and functional role in quadriceps tendon and patellar ligament. Micron 40:370–377

    Article  PubMed  Google Scholar 

  15. Frank CB, Hart DA, Shrive NG (1999) Molecular biology and biomechanics of normal and healing ligaments—a review. Osteoarthr Cartil 7:130–140

    Article  CAS  PubMed  Google Scholar 

  16. Fung DT, Ng GY, Leung MC, Tay DK (2003) Investigation of the collagen fibril distribution in the medial collateral ligament in a rat knee model. Connect Tissue Res 44:2–11

    CAS  PubMed  Google Scholar 

  17. Hart RA, Woo SL, Newton PO (1992) Ultrastructural morphometry of anterior cruciate and medial collateral ligaments: an experimental study in rabbits. J Orthop Res 10:96–103

    Article  CAS  PubMed  Google Scholar 

  18. Hoffmann A, Gross G (2007) Tendon and ligaments engineering in the adult organism: mesenchymal stem cells and gene-therapeutic approaches. Int Orthop 31:791–797

    Article  PubMed  Google Scholar 

  19. Hurschler C, Provenzano PP, Vanderby R Jr (2003) Scanning electron microscopic characterization of healing and normal rat ligament microstructure under slack and loaded conditions. Connect Tissue Res 44:59–68

    CAS  PubMed  Google Scholar 

  20. Järvinen TA, Järvinen TL, Kannus P, Jozsa L, Järvinen M (2004) Collagen fibres of the spontaneously ruptured human tendons display decreased thickness and crimp angle. J Orthop Res 22:1303–1309

    Article  PubMed  Google Scholar 

  21. Jung HJ, Fisher MB, Woo SL (2009) Role of biomechanics in the understanding of normal, injured, and healing ligaments and tendons. Sports Med Artrosc Rehabil Ther Technol 1:9

    Article  Google Scholar 

  22. Kannus P (2000) Structure of the tendon connective tissue. Scand J Med Sci Sports 10:312–320

    Article  CAS  PubMed  Google Scholar 

  23. Kastelic J, Galeski A, Baer E (1978) The multicomposite structure of tendon. Connect Tissue Res 6:11–23

    Article  CAS  PubMed  Google Scholar 

  24. Kastelic J, Palley I, Baer E (1980) A structural model for tendon crimping. J Biomech 13:887–893

    Article  CAS  PubMed  Google Scholar 

  25. Lanir Y (1978) Structure-strength relations in mammalian tendon. Biophys J 24:541–554

    Article  CAS  PubMed  Google Scholar 

  26. LaPrade RF, Tso A, Wentorf FA (2004) Force measurements on the fibular collateral ligament, popliteofibular ligament, and popliteus tendon to applied loads. Am J Sports Med 32:1695–1701

    Article  PubMed  Google Scholar 

  27. Lo IK, Marchuk LL, Leatherbarrow KE, Frank CB, Hart DA (2004) Collagen fibrillogenesis and mRNA levels in the maturing rabbit medial collateral ligament and patellar tendon. Connect Tissue Res 45:11–22

    Article  CAS  PubMed  Google Scholar 

  28. Lujan TJ, Underwood CJ, Henninger HB, Thompson BM, Weiss JA (2007) Effect of dermatan sulfate glycosaminoglycans on the quasi-static material properties of the human medial collateral ligament. J Orthop Res 25:894–903

    Article  CAS  PubMed  Google Scholar 

  29. Matsumoto H, Suda Y, Otani T, Niki Y, Seedhom BB, Fujikawa K (2001) Roles of the anterior cruciate ligament and the medial collateral ligament in preventing valgus instability. J Orthop Sci 6:28–32

    Article  CAS  PubMed  Google Scholar 

  30. Niven H, Baer E, Hiltner A (1982) Organization of collagen fibers in rat tail tendon at the optical microscope level. Coll Relat Res 2:131–142

    CAS  PubMed  Google Scholar 

  31. Parry DA, Barnes GR, Craig AS (1978) A comparison of the size distribution of collagen fibrils in connective tissues as a function of age and a possible relation between fibril size distribution and mechanical properties. Proc R Soc Lond B Biol Sci 203:305–321

    Article  CAS  PubMed  Google Scholar 

  32. Phisitkul P, James SL, Wolf BR, Amendola A (2006) MCL injuries of the knee: current concepts review. Iowa Orthop J 26:77–90

    PubMed  Google Scholar 

  33. Provenzano PP, Vanderby R Jr (2006) Collagen fibril morphology and organization: implications for force transmission in ligament and tendon. Matrix Biol 25:71–84

    Article  CAS  PubMed  Google Scholar 

  34. Robinson JR, Bull AM, Thomas RR, Amis AA (2006) The role of the medial collateral ligament and posteromedial capsule in controlling knee laxity. Am J Sports Med 34:1815–1823

    Article  PubMed  Google Scholar 

  35. Van de Velde SK, DeFrate LE, Gill TJ, Moses JM, Papannagari R, Li G (2007) The effect of anterior cruciate ligament deficiency on the in vivo elongation of the medial and lateral collateral ligaments. Am J Sports Med 35:294–300

    Article  PubMed  Google Scholar 

  36. Wilson DR, Feikes JD, O’Connor JJ (1998) Ligaments and articular contact guide passive knee flexion. J Biomech 31:1127–1136

    Article  CAS  PubMed  Google Scholar 

  37. Woo SL, Gomez MA, Sites TJ, Newton PO, Orlando CA, Akeson WH (1987) The biomechanical and morphological changes in the medial collateral ligament of the rabbit after immobilization and remobilization. J Bone Jt Surg Am 69:1200–1211

    CAS  Google Scholar 

  38. Woo SL, Newton PO, MacKenna DA, Lyon RM (1992) A comparative evaluation of the mechanical properties of the rabbit medial collateral and anterior cruciate ligaments. J Biomech 25:377–386

    Article  CAS  PubMed  Google Scholar 

  39. Woo SL, Debski RE, Withrow JD, Janaushek MA (1999) Biomechanics of knee ligaments. Am J Sports Med 27:533–543

    CAS  PubMed  Google Scholar 

  40. Yahia LH, Drouin G (1989) Microscopical investigation of canine anterior cruciate ligament and patellar tendon: collagen fascicle morphology and architecture. J Orthop Res 7:243–251

    Article  CAS  PubMed  Google Scholar 

  41. Yahia LH, Garzon S (1993) Structure on the capsular ligaments of the facet joints. Ann Anat 175:185–188

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Gianfranco Filippini, DipartImento di Scienze e Tecnologie Agroambientali, University of Bologna, for his technical assistance with SEM. This work was supported by a grant of Ministero dell’Istruzione, dell’ Università e della Ricerca (Ricerca Fondamentale Orientata 2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Franchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franchi, M., Quaranta, M., Macciocca, M. et al. Collagen fibre arrangement and functional crimping pattern of the medial collateral ligament in the rat knee. Knee Surg Sports Traumatol Arthrosc 18, 1671–1678 (2010). https://doi.org/10.1007/s00167-010-1084-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-010-1084-6

Keywords

Navigation