Skip to main content

Advertisement

Log in

Effect of in vitro culture on a chondrocyte-fibrin glue hydrogel for cartilage repair

  • Experimental Study
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Research in tissue engineering has been focused on articular cartilage repair for more than a decade. Some pioneristic studies involved the use of hydrogels such as alginate and fibrin glue which still possess valuable potential for cartilage regeneration. One of the main issues in cartilage tissue engineering is represented by the ideal maturation of the construct, before in vivo implantation, in order to optimize matrix quality and integration. The present study was focused on the effect of in vitro culture on a fibrin glue hydrogel embedding swine chondrocytes. We performed an evaluation of the immunohistochemical and biochemical composition and of the biomechanical properties of the construct after 1 and 5 weeks of culture. We noticed that chondrocytes survived in the fibrin glue gel and enhanced their synthetic activity. In fact, DNA content remained stable, while all indices of cartilage matrix production increased (GAGs content, immunohistochemistry for collagen II and safranin-o staining). On the other hand, the biomechanical properties remained steady, indicating a gradual substitution of the hydrogel scaffold by cartilaginous matrix. This demonstrates that an optimal preculture could provide the surgeon with a better engineered cartilage for implantation. However, whether this more mature tissue will result in a more efficient regeneration of the articular surface still has to be evaluated in future investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ahmed TA, Dare EV, Hincke M (2008) Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng Part B Rev 14:199–215

    Article  CAS  PubMed  Google Scholar 

  2. Becker JC, Domschke W, Pohle T (2004) Biological in vitro effects of fibrin glue: fibroblast proliferation, expression and binding of growth factors. Scand J Gastroenterol 39:927–932

    Article  CAS  PubMed  Google Scholar 

  3. Bonaventure J, Kadhom N, Cohen-Solal L, Ng KH, Bourguignon J, Lasselin C, Freisinger P (1994) Reexpression of cartilage-specific genes by dedifferentiated human articular chondrocytes cultured in alginate beads. Exp Cell Res 212:97–104

    Article  CAS  PubMed  Google Scholar 

  4. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331:889–895

    Article  CAS  PubMed  Google Scholar 

  5. Cherubino P, Grassi FA, Bulgheroni P, Ronga M (2003) Autologous chondrocyte implantation using a bilayer collagen membrane: a preliminary report. J Orthop Surg (Hong Kong) 11:10–15

    CAS  Google Scholar 

  6. Elisseeff J, Anseth K, Sims D, McIntosh W, Randolph M, Yaremchuk M, Langer R (1999) Transdermal photopolymerization of poly(ethylene oxide)-based injectable hydrogels for tissue-engineered cartilage. Plast Reconstr Surg 104:1014–1022

    Article  CAS  PubMed  Google Scholar 

  7. Erggelet C, Sittinger M, Lahm A (2003) The arthroscopic implantation of autologous chondrocytes for the treatment of full-thickness cartilage defects of the knee joint. Arthroscopy 19:108–110

    Article  PubMed  Google Scholar 

  8. Fedorovich NE, Alblas J, de Wijn JR, Hennink WE, Verbout AJ, Dhert WJ (2007) Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing. Tissue Eng 13:1905–1925

    Article  CAS  PubMed  Google Scholar 

  9. Ficat RP, Ficat C, Gedeon P, Toussaint JB (1979) Spongialization: a new treatment for diseased patellae. Clin Orthop Relat Res 144:74–83

    PubMed  Google Scholar 

  10. Grigolo B, Roseti L, De Franceschi L, Piacentini A, Cattini L, Manfredini M, Faccini R, Facchini A (2005) Molecular and immunohistological characterization of human cartilage two years following autologous cell transplantation. J Bone Joint Surg Am 87:46–57

    Article  PubMed  Google Scholar 

  11. Hangody L, Kish G, Karpati Z, Udvarhelyi I, Szigeti I, Bely M (1998) Mosaicplasty for the treatment of articular cartilage defects: application in clinical practice. Orthopedics 21:751–756

    CAS  PubMed  Google Scholar 

  12. Homminga GN, Buma P, Koot HW, van der Kraan PM, van den Berg WB (1993) Chondrocyte behavior in fibrin glue in vitro. Acta Orthop Scand 64:441–445

    Article  CAS  PubMed  Google Scholar 

  13. Hunziker EB (2002) Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr Cartil 10:432–463

    Article  CAS  PubMed  Google Scholar 

  14. Levy AS, Lohnes J, Sculley S, LeCroy M, Garrett W (1996) Chondral delamination of the knee in soccer players. Am J Sports Med 24:634–639

    Article  CAS  PubMed  Google Scholar 

  15. Liu Y, Chen F, Liu W, Cui L, Shang Q, Xia W, Wang J, Cui Y, Yang G, Liu D, Wu J, Xu R, Buonocore SD, Cao Y (2002) Repairing large porcine full-thickness defects of articular cartilage using autologous chondrocyte-engineered cartilage. Tissue Eng 8:709–721

    Article  CAS  PubMed  Google Scholar 

  16. Mankin HJ (1982) The response of articular cartilage to mechanical injury. J Bone Joint Surg 64A:460–466

    Google Scholar 

  17. Martin I, Miot S, Barbero A, Jakob M, Wendt D (2007) Osteochondral tissue engineering. J Biomech 40:750–765

    Article  PubMed  Google Scholar 

  18. Meachim G, Roberts C (1971) Repair of the joint surface from subarticular tissue in the rabbit knee. J Anat 109:317–327

    CAS  PubMed  Google Scholar 

  19. Mitchell N, Shepard N (1976) The resurfacing of adult rabbit articular cartilage by multiple perforations through the subchondral bone. J Bone Joint Surg Am 58:230–233

    CAS  PubMed  Google Scholar 

  20. Moretti M, Wendt D, Dickinson SC, Sims TJ, Hollander AP, Kelly DJ, Prendergast PJ, Heberer M, Martin I (2005) Effects of in vitro preculture on in vivo development of human engineered cartilage in an ectopic model. Tissue Eng 11:1421–1428

    Article  CAS  PubMed  Google Scholar 

  21. Niemeyer P, Pestka JM, Kreuz PC, Erggelet C, Schmal H, Suedkamp NP, Steinwachs M (2008) Characteristic complications after autologous chondrocyte implantation for cartilage defects of the knee joint. Am J Sports Med 36:2091–2099

    Article  PubMed  Google Scholar 

  22. Obradovic B, Martin I, Padera RF, Treppo S, Freed LE, Vunjak-Novakovic G (2001) Integration of engineered cartilage. J Orthop Res 19:1089–1097

    Article  CAS  PubMed  Google Scholar 

  23. Paige KT, Cima LG, Yaremchuk MJ, Schloo BL, Vacanti JP, Vacanti CA (1996) De novo cartilage generation using calcium alginate-chondrocyte constructs. Plast Reconstr Surg 97:168–178

    Article  CAS  PubMed  Google Scholar 

  24. Peretti GM, Buragas MS, Scotti C, Mangiavini L, Sosio C, Di Giancamillo D, Domeneghini C, Fraschini G (2006) An in vitro tissue engineered model for osteochondral repair. Sport Sci Health 1:153–157

    Article  Google Scholar 

  25. Peretti GM, Bonassar LJ, Caruso EM, Randolph MA, Trahan CA, Zaleske DJ (1999) Biomechanical analysis of a chondrocyte-based repair model of articular cartilage. Tissue Eng 5:317–326

    Article  CAS  PubMed  Google Scholar 

  26. Peretti GM, Randolph MA, Caruso EM, Rossetti F, Zaleske DJ (1998) Bonding of cartilage matrices with cultured chondrocytes: an experimental model. J Orthop Res 16:89–95

    Article  CAS  PubMed  Google Scholar 

  27. Peretti GM, Zaporojan V, Spangenberg KM, Randolph MA, Fellers J, Bonassar LJ (2003) Cell-based bonding of articular cartilage: an extended study. J Biomed Mater Res A 64:517–524

    Article  PubMed  Google Scholar 

  28. Peretti GM, Randolph MA, Villa MT, Buragas MS, Yaremchuk MJ (2000) Cell-based tissue-engineered allogeneic implant for cartilage repair. Tissue Eng 6:567–576

    Article  CAS  PubMed  Google Scholar 

  29. Peretti GM, Xu JW, Bonassar LJ, Kirchhoff CH, Yaremchuk MJ, Randolph MA (2006) Review of injectable cartilage engineering using fibrin gel in mice and swine models. Tissue Eng 12:1151–1168

    Article  CAS  PubMed  Google Scholar 

  30. Schaefer D, Martin I, Jundt G, Seidel J, Heberer M, Grodzinsky A, Bergin I, Vunjak-Novakovic G, Freed LE (2002) Tissue-engineered composites for the repair of large osteochondral defects. Arthritis Rheum 46:2524–2534

    Article  PubMed  Google Scholar 

  31. Scotti C, Buragas MS, Mangiavini L, Sosio C, Di Giancamillo A, Domeneghini C, Fraschini G, Peretti GM (2007) A tissue engineered osteochondral plug: an in vitro morphological evaluation. Knee Surg Sports Traumatol Arthrosc 15:1363–1369

    Article  CAS  PubMed  Google Scholar 

  32. Silverman RP, Passaretti D, Huang W, Randolph MA, Yaremchuk MJ (1999) Injectable tissue-engineered cartilage using a fibrin glue polymer. Plast Reconstr Surg 103:1809–1818

    Article  CAS  PubMed  Google Scholar 

  33. Sims CD, Butler PE, Cao YL, Casanova R, Randolph MA, Black A, Vacanti CA, Yaremchuk MJ (1998) Tissue engineered neocartilage using plasma derived polymer substrates and chondrocytes. Plast Reconstr Surg 101:1580–1585

    Article  CAS  PubMed  Google Scholar 

  34. Sims CD, Butler PE, Casanova R, Lee BT, Randolph MA, Lee WP, Vacanti CA, Yaremchuk MJ (1996) Injectable cartilage using polyethylene oxide polymer substrates. Plast Reconstr Surg 98:843–850

    Article  CAS  PubMed  Google Scholar 

  35. Steadman JR, Rodkey WG, Briggs KK, Rodrigo JJ (1999) The microfracture technic in the management of complete cartilage defects in the knee joint. Orthopade 28:26–32

    CAS  PubMed  Google Scholar 

  36. Xu JW, Zaporojan V, Peretti GM, Roses RE, Morse KB, Roy AK, Mesa JM, Randolph MA, Bonassar LJ, Yaremchuk MJ (2004) Injectable tissue-engineered cartilage with different chondrocyte sources. Plast Reconstr Surg 113:1361–1371

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was done at the Stem Cell Research Institute, directed by Professor Giulio Cossu. The authors gratefully acknowledge Dr. Corrado Sosio, Dr. Alessandro Pozzi, Dr. Alessia Di Giancamillo and Dr. Daniela Deponti for their assistance in sample preparation and analysis. A special thanks is given to Mr. Paolo Stortini for his precious help in histological analysis and to the Spaccio Agricolo Agripig for their assistance in animal management. This work was funded by the Fondazione CARIPLO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe M. Peretti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scotti, C., Mangiavini, L., Boschetti, F. et al. Effect of in vitro culture on a chondrocyte-fibrin glue hydrogel for cartilage repair. Knee Surg Sports Traumatol Arthrosc 18, 1400–1406 (2010). https://doi.org/10.1007/s00167-009-1014-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-009-1014-7

Keywords

Navigation