A new measurement technique for the tibiofemoral contact point in normal knees and knees with TKR

Abstract

Flexion gap instability after cruciate retaining TKR allows paradoxical anterior movement of the femur during flexion. The tibiofemoral contact point (CP) moves anteriorly and produces a decrease in the lever arm of the extensor apparatus. This can provoke patellofemoral, tibiofemoral-joint pain and instability for the patient. In order to quantify the amount of paradoxical motion on a 90° flexion radiograph of the knee, the average normal CP of the natural knee should be known. There are no known CP measurement methods suited for natural knees and knees with TKR that can be applied in daily practice, and only estimations for the CP position have been made. Therefore, a CP measurement technique on lateral radiographs that can be applied to natural knees and knees with a TKR has been developed. The reproducibility of this method was assessed. It was then used to determine the normal range of the CP in natural knees. The medial contact point in the natural knee in 90° of flexion was determined to be at 68% (±6.6%) of the AP diameter of the tibia measured below the tibia-plateau simulating a bone resection with TKR. This reproducible CP measurement method can be used clinically to evaluate the CP after knee prosthesis and also in patients with suspected ligament lesions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Arabori M, Matsui N, Kuroda R et al (2008) Posterior condylar offset and flexion in posterior cruciate-retaining and posterior stabilized TKA. J Orthop Sci 13:46–50

    Article  PubMed  Google Scholar 

  2. 2.

    Archibeck MJ, Berger RA, Barden RM et al (2001) Posterior cruciate ligament—retaining total knee arthroplasty in patients with rheumatoid arthritis. J Bone Joint Surg Am 83-A:1231–1236

    CAS  PubMed  Google Scholar 

  3. 3.

    Banks SA, Harman MK, Bellemans J et al (2003) Making sense of knee arthroplasty kinematics: news you can use. J Bone Joint Surg Am 85-A(Suppl 4):64–72

    PubMed  Google Scholar 

  4. 4.

    Bellemans J, Banks S, Victor J et al (2002) Fluoroscopic analysis of the kinematics of deep flexion in total knee arthroplasty. Influence of posterior condylar offset. J Bone Joint Surg Br 84:50–53

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Bellemans J, Ries MD, Victor JMK (2005) Total knee arthroplasty. Springer, New York

    Book  Google Scholar 

  6. 6.

    Cates HE, Komistek RD, Mahfouz MR et al (2008) In vivo comparison of knee kinematics for subjects having either a posterior stabilized or cruciate retaining high-flexion total knee arthroplasty. J Arthroplast 23:1057–1067

    Article  Google Scholar 

  7. 7.

    Christen B, Heesterbeek P, Wymenga A et al (2007) Posterior cruciate ligament balancing in total knee replacement: the quantitative relationship between tightness of the flexion gap and tibial translation. J Bone Joint Surg Br 89:1046–1050

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    D’Lima DD, Poole C, Chadha H et al (2001) Quadriceps moment arm and quadriceps forces after total knee arthroplasty. Clin Orthop Relat Res 392:213–220

    Article  PubMed  Google Scholar 

  9. 9.

    Dejour D, Deschamps G, Garotta L et al (1999) Laxity in posterior cruciate sparing and posterior stabilized total knee prostheses. Clin Orthop Relat Res 364:182–193

    Article  PubMed  Google Scholar 

  10. 10.

    Freeman MA, Pinskerova V (2003) The movement of the knee studied by magnetic resonance imaging. Clin Orthop Relat Res 410:35–43

    Article  PubMed  Google Scholar 

  11. 11.

    Garavaglia G, Lubbeke A, Dubois-Ferriere V et al (2007) Accuracy of stress radiography techniques in grading isolated and combined posterior knee injuries: a cadaveric study. Am J Sports Med 35:2051–2056

    Article  PubMed  Google Scholar 

  12. 12.

    Hartford JM, Banit D, Hall K et al (2001) Radiographic analysis of low contact stress meniscal bearing total knee replacements. J Bone Joint Surg Am 83-A:229–234

    CAS  PubMed  Google Scholar 

  13. 13.

    Hazaki S, Yokoyama Y, Inoue H (2001) A radiographic analysis of anterior-posterior translation in total knee arthroplasty. J Orthop Sci 6:390–396

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Incavo SJ, Mullins ER, Coughlin KM et al (2004) Tibiofemoral kinematic analysis of kneeling after total knee arthroplasty. J Arthroplast 19:906–910

    Article  Google Scholar 

  15. 15.

    Martin Bland J, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 326:307–310

    Article  Google Scholar 

  16. 16.

    Jacobs WC, Clement DJ, Wymenga AB (2005) Retention versus removal of the posterior cruciate ligament in total knee replacement: a systematic literature review within the Cochrane framework. Acta Orthop 76:757–768

    Article  PubMed  Google Scholar 

  17. 17.

    Jung TM, Reinhardt C, Scheffler SU et al (2006) Stress radiography to measure posterior cruciate ligament insufficiency: a comparison of five different techniques. Knee Surg Sports Traumatol Arthrosc 14:1116–1121

    Article  PubMed  Google Scholar 

  18. 18.

    Kim H, Pelker RR, Gibson DH et al (1997) Rollback in posterior cruciate ligament-retaining total knee arthroplasty. A radiographic analysis. J Arthroplast 12:553–561

    Article  CAS  Google Scholar 

  19. 19.

    Komistek RD, Dennis DA, Mahfouz M (2003) In vivo fluoroscopic analysis of the normal human knee. Clin Orthop Relat Res 410:69–81

    Article  PubMed  Google Scholar 

  20. 20.

    Li G, DeFrate LE, Park SE et al (2005) In vivo articular cartilage contact kinematics of the knee: an investigation using dual-orthogonal fluoroscopy and magnetic resonance image-based computer models. Am J Sports Med 33:102–107

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Li G, Suggs J, Hanson G et al (2006) Three-dimensional tibiofemoral articular contact kinematics of a cruciate-retaining total knee arthroplasty. J Bone Joint Surg Am 88:395–402

    Article  PubMed  Google Scholar 

  22. 22.

    Misra AN, Hussain MR, Fiddian NJ et al (2003) The role of the posterior cruciate ligament in total knee replacement. J Bone Joint Surg Br 85:389–392

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Pagnano MW, Hanssen AD, Lewallen DG et al (1998) Flexion instability after primary posterior cruciate retaining total knee arthroplasty. Clin Orthop Relat Res 356:39–46

    Article  PubMed  Google Scholar 

  24. 24.

    Parratte S, Pagnano MW (2008) Instability after total knee arthroplasty. Instr Course Lect 57:295–304

    PubMed  Google Scholar 

  25. 25.

    Pinskerova V, Johal P, Nakagawa S et al (2004) Does the femur roll-back with flexion? J Bone Joint Surg Br 86:925–931

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Schulz MS, Russe K, Lampakis G et al (2005) Reliability of stress radiography for evaluation of posterior knee laxity. Am J Sports Med 33:502–506

    Article  PubMed  Google Scholar 

  27. 27.

    Schwab JH, Haidukewych GJ, Hanssen AD et al (2005) Flexion instability without dislocation after posterior stabilized total knees. Clin Orthop Relat Res 440:96–100

    Article  PubMed  Google Scholar 

  28. 28.

    Staubli HU, Jakob RP (1990) Posterior instability of the knee near extension. A clinical and stress radiographic analysis of acute injuries of the posterior cruciate ligament. J Bone Joint Surg Br 72:225–230

    CAS  PubMed  Google Scholar 

  29. 29.

    Staubli HU, Noesberger B, Jakob RP (1992) Stressradiography of the knee. Cruciate ligament function studied in 138 patients. Acta Orthop Scand Suppl 249:1–27

    CAS  PubMed  Google Scholar 

  30. 30.

    Torzilli PA, Greenberg RL, Insall J (1981) An in vivo biomechanical evaluation of anterior-posterior motion of the knee. Roentgenographic measurement technique, stress machine, and stable population. J Bone Joint Surg Am 63:960–968

    CAS  PubMed  Google Scholar 

  31. 31.

    van Duren BH, Pandit H, Beard DJ et al (2007) How effective are added constraints in improving TKR kinematics? J Biomech 40(Suppl 1):S31–S37

    PubMed  Google Scholar 

  32. 32.

    Vedi V, Williams A, Tennant SJ et al (1999) Meniscal movement. An in vivo study using dynamic MRI. J Bone Joint Surg Br 81:37–41

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Victor J, Banks S, Bellemans J (2005) Kinematics of posterior cruciate ligament- retaining and -substituting total knee arthroplasty: a prospective randomised outcome study. J Bone Joint Surg Br 87:646–655

    Article  CAS  PubMed  Google Scholar 

  34. 34.

    Wretenberg P, Ramsey DK, Nemeth G (2002) Tibiofemoral contact points relative to flexion angle measured with MRI. Clin Biomech (Bristol, Avon) 17:477–485

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge John Berns and his team of the Radiology Department of the Sint Maartenskliniek for taking the lateral radiographs. The authors also thank P.G. Anderson for her editorial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. J. C. Heesterbeek.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

de Jong, R.J., Heesterbeek, P.J.C. & Wymenga, A.B. A new measurement technique for the tibiofemoral contact point in normal knees and knees with TKR. Knee Surg Sports Traumatol Arthrosc 18, 388–393 (2010). https://doi.org/10.1007/s00167-009-0986-7

Download citation

Keywords

  • Tibiofemoral contact point
  • Measurement technique
  • Normal values
  • Radiographic measurement
  • Knee