Tibiofemoral kinematic analysis of knee flexion for a medial pivot knee

Abstract

The performance of total knee arthroplasty in deeply flexed postures is of increasing concern as the procedure is performed on younger, more physically active and more culturally diverse populations. Several implant design factors, including tibiofemoral conformity, tibial slope and posterior condylar geometry have been shown directly to affect deep flexion performance. The goal of this study was to evaluate the kinematics of a fixed-bearing, asymmetric, medial rotation arthroplasty design in moderate and deep flexion. Thirteen study participants (15 knees) with a medial rotation knee arthroplasty were observed performing a weight-bearing lunge activity to maximum comfortable flexion and kneeling on a padded bench from 90° to maximum comfortable flexion using lateral fluoroscopy. Subjects averaged 74 years of age and nine were female. At maximum weight-bearing flexion, the knees exhibited 115° of implant flexion (102°–125°) and 7° (−3° to 12°) of tibial internal rotation. The medial and lateral condylar translated posteriorly by 2 and 5 mm, respectively. At maximum kneeling flexion, the knees exhibited 119° of implant flexion (101°–139°) and 5° (−2° to 14°) of tibial internal rotation. The lateral condyle translated posteriorly by 11 mm. The medial rotation knee exhibited motion patterns similar to those observed in the normal knee, but less tibial rotation. The medially conforming articulation beneficially controls femoral AP position in deep flexion, in patients who require such motion as part of their lifestyle.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Asano T, Akagi M, Tanaka K, Tamura J, Nakamura T (2001) In vivo three-dimensional knee kinematics using a biplanar image-matching technique. Clin Orthop Relat Res 388:157–166

    PubMed  Article  Google Scholar 

  2. 2.

    Banks SA, Harman MK, Bellemans J, Hodge WA (2003) Making sense of knee arthroplasty kinematics: news you can use. J Bone Joint Surg Am 85-A(Suppl 4):64–72

    PubMed  Google Scholar 

  3. 3.

    Banks SA, Harman MK, Hodge WA (2002) Mechanism of anterior impingement damage in total knee arthroplasty. J Bone Joint Surg Am 84-A(Suppl 2):37–42

    PubMed  Google Scholar 

  4. 4.

    Banks SA, Hodge WA (1996) Accurate measurement of three-dimensional knee replacement kinematics using single-plane fluoroscopy. IEEE Trans Biomed Eng 43:638–649

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Banks SA, Hodge WA (2004) 2003 Hap Paul Award Paper of the International Society for Technology in Arthroplasty. Design and activity dependence of kinematics in fixed and mobile-bearing knee arthroplasties. J Arthroplasty 19:809–816

    PubMed  Article  Google Scholar 

  6. 6.

    Banks SA, Markovich GD, Hodge WA (1997) In vivo kinematics of cruciate-retaining and -substituting knee arthroplasties. J Arthroplasty 12:297–304

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Callaghan JJ, O’Rourke MR, Goetz DD, Schmalzried TP, Campbell PA, Johnston RC (2002) Tibial post impingement in posterior-stabilized total knee arthroplasty. Clin Orthop Relat Res 404:83–88

    PubMed  Article  Google Scholar 

  8. 8.

    Dawson J, Fitzpatrick R, Murray D, Carr A (1998) Questionnaire on the perceptions of patients about total knee replacement. J Bone Joint Surg Br 80:63–69

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Dennis D, Komistek R, Scuderi G, Argenson JN, Insall J, Mahfouz M, Aubaniac JM, Haas B (2001) In vivo three-dimensional determination of kinematics for subjects with a normal knee or a unicompartmental or total knee replacement. J Bone Joint Surg Am 83-A(Suppl 2 Pt 2):104–115

    PubMed  Google Scholar 

  10. 10.

    Dennis DA, Komistek RD, Colwell CE Jr, Ranawat CS, Scott RD, Thornhill TS, Lapp MA (1998) In vivo anteroposterior femorotibial translation of total knee arthroplasty: a multicenter analysis. Clin Orthop Relat Res 356:47–57

    PubMed  Article  Google Scholar 

  11. 11.

    Dennis DA, Komistek RD, Mahfouz MR, Haas BD, Stiehl JB (2003) Multicenter determination of in vivo kinematics after total knee arthroplasty. Clin Orthop Relat Res 416:37–57

    PubMed  Article  Google Scholar 

  12. 12.

    Dennis DA, Komistek RD, Mahfouz MR, Walker SA, Tucker A (2004) A multicenter analysis of axial femorotibial rotation after total knee arthroplasty. Clin Orthop Relat Res 428:180–189

    PubMed  Article  Google Scholar 

  13. 13.

    Dennis DA, Mahfouz MR, Komistek RD, Hoff W (2005) In vivo determination of normal and anterior cruciate ligament-deficient knee kinematics. J Biomech 38:241–253

    PubMed  Article  Google Scholar 

  14. 14.

    Gillis A, Furman B, Schmieg J, Bhattacharyya S, Li S (2001) The effect of post impingement in posterior stabilized total knee replacements on femoral rotation and damaged area as determined from analysis of retrieved tibial inserts. Trans Orthop Res Soc 47:1098

    Google Scholar 

  15. 15.

    Haas BD, Komistek RD, Stiehl JB, Anderson DT, Northcut EJ (2002) Kinematic comparison of posterior cruciate sacrifice versus substitution in a mobile bearing total knee arthroplasty. J.Arthroplasty 17:685–692

    PubMed  Article  Google Scholar 

  16. 16.

    Hill PF, Vedi V, Williams A, Iwaki H, Pinskerova V, Freeman MA (2000) Tibiofemoral movement 2: the loaded and unloaded living knee studied by MRI. J Bone Joint Surg Br 82:1196–1198

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Insall JN, Dorr LD, Scott RD, Scott WN (1989) Rationale of the Knee Society clinical rating system. Clin Orthop Relat Res 248:13–14

    PubMed  Google Scholar 

  18. 18.

    Johal P, Williams A, Wragg P, Hunt D, Gedroyc W (2005) Tibio-femoral movement in the living knee. A study of weight bearing and non-weight bearing knee kinematics using ‘interventional’ MRI. J Biomech 38:269–276

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Kanekasu K, Banks SA, Honjo S, Nakata O, Kato H (2004) Fluoroscopic analysis of knee arthroplasty kinematics during deep flexion kneeling. J Arthroplasty 19:998–1003

    PubMed  Article  Google Scholar 

  20. 20.

    Komistek RD, Dennis DA, Mahfouz M (2003) In vivo fluoroscopic analysis of the normal human knee. Clin Orthop Relat Res 410:69–81

    PubMed  Article  Google Scholar 

  21. 21.

    Komistek RD, Scott RD, Dennis DA, Yasgur D, Anderson DT, Hajner ME (2002) In vivo comparison of femorotibial contact positions for press-fit posterior stabilized and posterior cruciate-retaining total knee arthroplasties. J Arthroplasty 17:209–216

    PubMed  Article  Google Scholar 

  22. 22.

    Mahfouz MR, Hoff WA, Komistek RD, Dennis DA (2005) Effect of segmentation errors on 3D-to-2D registration of implant models in X-ray images. J Biomech 38:229–239

    PubMed  Article  Google Scholar 

  23. 23.

    Moro-Oka TA, Hamai S, Miura H, Shimoto T, Higaki H, Fregly BJ, Iwamoto Y, Banks SA (2007) Can magnetic resonance imaging-derived bone models be used for accurate motion measurement with single-plane three-dimensional shape registration? J Orthop Res 25:867–872

    PubMed  Article  Google Scholar 

  24. 24.

    Nakagawa S, Kadoya Y, Todo S, Kobayashi A, Sakamoto H, Freeman MA, Yamano Y (2000) Tibiofemoral movement 3: full flexion in the living knee studied by MRI. J Bone Joint Surg Br 82:1199–1200

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Noble O, Vagner G, Conditt M (2001) The role of the cam mechanism in posterior stabilized TKR: an analysis of 75 retrieved components. Trans Orthop Res Soc 47:1102

    Google Scholar 

  26. 26.

    Puloski SK, McCalden RW, Macdonald SJ, Rorabeck CH, Bourne RB (2001) Tibial post wear in posterior stabilized total knee arthroplasty. An unrecognized source of polyethylene debris. J Bone Joint Surg Am 83-A:390–397

    PubMed  CAS  Google Scholar 

  27. 27.

    Saari T, Uvehammer J, Carlsson LV, Herberts P, Regner L, Karrholm J (2003) Kinematics of three variations of the Freeman-Samuelson total knee prosthesis. Clin Orthop Relat Res 410:235–247

    PubMed  Article  Google Scholar 

  28. 28.

    Schmidt R, Komistek RD, Blaha JD, Penenberg BL, Maloney WJ (2003) Fluoroscopic analyses of cruciate-retaining and medial pivot knee implants. Clin Orthop Relat Res 410:139–147

    PubMed  Article  Google Scholar 

  29. 29.

    Stiehl JB, Komistek RD, Cloutier JM, Dennis DA (2000) The cruciate ligaments in total knee arthroplasty: a kinematic analysis of 2 total knee arthroplasties. J Arthroplasty 15:545–550

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Stiehl JB, Komistek RD, Dennis DA, Paxson RD, Hoff WA (1995) Fluoroscopic analysis of kinematics after posterior-cruciate-retaining knee arthroplasty. J Bone Joint Surg Br 77:884–889

    PubMed  CAS  Google Scholar 

  31. 31.

    Tupling SJ, Pierrynowski MR (1987) Use of cardan angles to locate rigid bodies in three-dimensional space. Med Biol Eng Comput 25:527–532

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Victor J, Banks S, Bellemans J (2005) Kinematics of posterior cruciate ligament-retaining and -substituting total knee arthroplasty: a prospective randomised outcome study. J Bone Joint Surg Br 87:646–655

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Yoshiya S, Matsui N, Komistek RD, Dennis DA, Mahfouz M, Kurosaka M (2005) In vivo kinematic comparison of posterior cruciate-retaining and posterior stabilized total knee arthroplasties under passive and weight-bearing conditions. J Arthroplasty 20:777–783

    PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pradeep Moonot.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AVI 290 kb)

Supplementary material 4 (AVI 261 kb)

Supplementary material 2 (TIFF 402 kb)

Supplementary material 3 (TIFF 402 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Moonot, P., Mu, S., Railton, G.T. et al. Tibiofemoral kinematic analysis of knee flexion for a medial pivot knee. Knee Surg Sports Traumatol Arthrosc 17, 927–934 (2009). https://doi.org/10.1007/s00167-009-0777-1

Download citation

Keywords

  • Kinematics
  • Knee
  • Total knee replacement
  • Medial pivot
  • Fluoroscopy