Intercondylar roof impingement pressure after anterior cruciate ligament reconstruction in a porcine model

  • Takanori Iriuchishima
  • Goro Tajima
  • Sheila J. M. Ingham
  • Wei Shen
  • Takashi Horaguchi
  • Akiyoshi Saito
  • Patrick Smolinski
  • Freddie H. FuEmail author


Anterior cruciate ligament (ACL) graft impingement against the intercondylar roof has been postulated, but not thoroughly investigated. The roof impingement pressure changes with different tibial and femoral tunnel positions in ACL reconstruction. Anterior tibial translation is also affected by the tunnel positions of ACL reconstruction. The study design included a controlled laboratory study. In 15 pig knees, the impingement pressure between ACL and intercondylar roof was measured using pressure sensitive film before and after ACL single bundle reconstruction. ACL reconstructions were performed in each knee with two different tibial and femoral tunnel position combinations: (1) tibial antero-medial (AM) tunnel to femoral AM tunnel (AM to AM) and (2) tibial postero-lateral (PL) tunnel to femoral High-AM tunnel (PL to High-AM). Anterior tibial translation (ATT) was evaluated after each ACL reconstruction using robotic/universal force-moment sensor testing system. Neither the AM to AM nor the PL to High-AM ACL reconstruction groups showed significant difference when compared with intact ACL in roof impingement pressure. The AM to AM group had a significantly higher failure load than PL to High-AM group. This study showed how different tunnel placements affect the ACL-roof impingement pressure and anterior-posterior laxity in ACL reconstruction. Anatomical ACL reconstruction does not cause roof impingement and it has a biomechanical advantage in ATT when compared with non-anatomical ACL reconstructions in the pig knee. There is no intercondylar roof impingement after anatomical single bundle ACL reconstruction.


Anterior cruciate ligament Reconstruction Anatomical Double bundle Impingement Pressure 



The support of the Albert B. Ferguson Jr. MD Orthopaedic Fund of The Pittsburgh Foundation is gratefully acknowledged. We also wish to thank Fuji Film Co. Ltd, Tokyo, Japan, for their generous donation of pressure sensitive films and technical assistance. The authors also thank Masahiro Nozaki, Andrew Tsai, James Yang and Timothy McGlaston for their kind help.


  1. 1.
    Arnold MP, Kooloos J, Kampen A (2001) Single-incision technique misses the anatomical femoral anterior cruciateligament insertion: a cadaver study. Knee Surg Sports Traumatol Arthrosc 9:194–199PubMedGoogle Scholar
  2. 2.
    Bachus KN, DeMarco AL, Judd KT et al (2006) Measuring contact area, force, and pressure for bioengineering applications: using Fuji Film and Tekscan system. Med Eng Phys 28:483–488PubMedCrossRefGoogle Scholar
  3. 3.
    Berkson E, Lee GH, Kumar A et al (2006) The effect of cyclic loading on rotated bone-tendon-bone anterior cruciate ligament graft constructs. Am J Sports Med 34:1442–1449PubMedCrossRefGoogle Scholar
  4. 4.
    Brophy RH, Selby RM, Altchek DW (2006). Anterior cruciate ligament revision: double-bundle augmentation of primary vertical graft. Arthroscopy 22: 683 e1–5Google Scholar
  5. 5.
    Buoncristiani AM, Tjoumakaris FP, Starman JS et al (2006) Anatomic double-bundle anterior cruciate ligament reconstruction. Arthroscopy 22:1000–1006PubMedGoogle Scholar
  6. 6.
    Cuomo P, Edwards A, Giron F et al (2006) Validation of the 65° howell guide for anterior cruciate ligament reconstruction. Arthroscopy 22:70–75PubMedGoogle Scholar
  7. 7.
    Darcy SP, Kilger RH, Woo SL et al (2006) Estimation of ACL forces by reproducing knee kinematics between sets of knees: a novel noninvasive methodology. J Bionech 39:2371–2377Google Scholar
  8. 8.
    Ferretti M, Ekdahl M, Shen W et al (2007) Osseous landmarks of the femoral attachment of the anterior cruciate ligament: an anatomic study. Arthroscopy 23:1218–1225PubMedGoogle Scholar
  9. 9.
    Fithian DC, Paxton EW, Stone ML et al (2005) Prospective trial of a treatment algorithm for the management of the anterior cruciate ligament-injured knee. Am J Sports Med 33:335–346PubMedCrossRefGoogle Scholar
  10. 10.
    Fu FH, Bennett CH, Ma B et al (2000) Current trends in anterior cruciate ligament reconstruction: part II. Operative procedures and clinical correlations. Am J Sports Med 28:124–130PubMedGoogle Scholar
  11. 11.
    Fung DT, Zhang LQ (2003) Modeling of ACL impingement against the intercondylar notch. Clin Biomech 18:933–941CrossRefGoogle Scholar
  12. 12.
    Goss BC, Howell SM, Hull ML (1998) Quadriceps load aggravates and roofplasty mitigates active impingement of anterior cruciate ligament grafts against the intercondylar roof. J Orthopaed Res 16:611–617CrossRefGoogle Scholar
  13. 13.
    Goss BC, Hull ML, Howell SM (1997) Contact pressure and tension in anterior cruciate ligament grafts subjected to roof impingement during passive extension. J Orthopaed Res 15:263–268CrossRefGoogle Scholar
  14. 14.
    Hame SL, Markolf KL, Hunter DM et al (2003) Effects of notchplasty and femoral tunnel position on excursion patterns of an anterior cruciate ligament graft. Arthroscopy 19:340–345PubMedGoogle Scholar
  15. 15.
    Harner CD, Vogrin TM (2002) What’s new in sports medicine. J Bone Joint Surg Am 84:1095–1099PubMedGoogle Scholar
  16. 16.
    Howell SM (1998) Principles for placing the tibial tunnel and avoiding roof impingement during reconstruction of a torn anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 6:S49–S55PubMedCrossRefGoogle Scholar
  17. 17.
    Jagodzinski M, Leis A, Iselborn KW et al (2003) Impingement pressure and tension forces of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 11:85–90PubMedGoogle Scholar
  18. 18.
    Jagodzinski M, Richter GM, Passler HH (2000) Biomechanical analysis of knee hyperextension and of the impingement of the anterior cruciate ligament: a cinematographic MRI study with impact on tibial tunnel positioning in anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 8:11–19PubMedCrossRefGoogle Scholar
  19. 19.
    Liau JJ, Cheng CK, Huang CH et al (2002) Effect of Fuji pressure sensitive film on actual contact characteristics of artificial tibiofemoral joint. Clin Biomech 17:698–704CrossRefGoogle Scholar
  20. 20.
    Loh JC, Fukuda Y, Tsuda E et al (2003) Knee stability and graft function following anterior cruciate ligament reconstruction: comparison between 11 o’clock and 10 o’clock femoral tunnel placement. Arthroscopy 19:297–304PubMedGoogle Scholar
  21. 21.
    Mae T, Shino K, Miyama T et al (2001) Single versus two-femoral socket anterior cruciate ligament reconstruction technique: biomechanical analysis using a robotic simulator. Arthroscopy 17:708–716PubMedGoogle Scholar
  22. 22.
    Muneta T, Koga H, Mochizuki T et al (2007) A prospective randomized study of 4-strand semitendinosus tendon anterior cruciate ligament reconstruction comparing single-bundle and double bundle techniques. Arthroscopy 23:618–628PubMedCrossRefGoogle Scholar
  23. 23.
    Muneta T, Yamamoto H, Ishibashi T et al (1995) The effects of tibial tunnel placement and roofplasty on reconstructed anterior cruciate ligament knees. Arthroscopy 11:57–62PubMedCrossRefGoogle Scholar
  24. 24.
    Steiner ME, Murray MM, Rodeo SA (2008) Strategies to improve anterior cruciate ligament healing and graft placement. Am J Sports Med 36:176–189PubMedCrossRefGoogle Scholar
  25. 25.
    Yagi M, Wong EK, Kanamori A et al (2002) Biomechanical analysis of anatomic anterior cruciate ligament reconstruction. Am J Sports Med 30:660–666PubMedGoogle Scholar
  26. 26.
    Yasuda K, Kondo E, Ichiyama H et al (2006) Clinical evaluation of anatomic double-bundle anterior cruciate ligament reconstruction procedure using hamstring tendon grafts: comparisons among 3 different procedures. Arthroscopy 22:240–251PubMedCrossRefGoogle Scholar
  27. 27.
    Yunes M, Richmond JC, Engels EA et al (2001) Patella versus hamstrings tendons in anterior cruciate ligament reconstruction: a meta-analysis. Arthroscopy 17:248–257PubMedGoogle Scholar
  28. 28.
    Zantop T, Wellmann M, Fu FH et al (2008) Tunnel positioning of anteromedial and posterolateral bundles in anatomic anterior cruciate ligament reconstruction: anatomic and radiographic findings. Am J Sports Med 36:65–72PubMedCrossRefGoogle Scholar
  29. 29.
    Zavras TD, Race A, Amis AA (2005) The effect of femoral attachment location on anterior cruciate ligament reconstruction: graft tension and restoration of normal anterior–posterior laxity patterns. Knee Surg Sports Traumatol Arthrosc 13:92–100PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Takanori Iriuchishima
    • 1
  • Goro Tajima
    • 1
  • Sheila J. M. Ingham
    • 1
  • Wei Shen
    • 1
  • Takashi Horaguchi
    • 3
  • Akiyoshi Saito
    • 3
  • Patrick Smolinski
    • 1
    • 2
  • Freddie H. Fu
    • 1
    • 2
    Email author
  1. 1.Department of Orthopaedic SurgeryUniversity of Pittsburgh Medical CenterPittsburghUSA
  2. 2.Department of Mechanical Engineering and Material ScienceUniversity of PittsburghPittsburghUSA
  3. 3.Department of Orthopaedic SurgeryNihon University School of MedicineTokyoJapan

Personalised recommendations