Abstract
There is limited scientific knowledge on ACL injuries in children 12 years or younger. Substantial controversy exists on treatment algorithms and there are no published data on performance-based functional outcome. Classification of adult ACL injured subjects as copers and non-copers is common, but no study has classified knee function in children using performance-based functional test after ACL injury. The aim of the present study was to evaluate the medium-term functional outcome among children with ACL injury and to classify them as copers and non-copers. Children 12 years or younger who were referred to our institution from 1996 to 2004 with an ACL injury were included. Twenty non-operated subjects (21 knees) and six ACL reconstructed subjects (7 knees) were examined at a minimum of 2 years after ACL injury or reconstruction. Four single-legged hop tests, isokinetic muscle strength measurements, and three functional questionnaires (IKDC 2000, KOS-ADLS and Lysholm) were used as outcome measurements. Children who had resumed their pre-injury activity level and performed above 90% on all hop tests were classified as copers following non-operative treatment and ACL reconstruction. The 26 children were on average 10.1 years at the time of injury. Of the non-operated children, 65% had returned to pre-injury activity level, and 50% were classified as copers. Copers scored significantly better than non-copers on single hop for distance, IKDC 2000, and Lysholm score. Of the non-operated children, 9.5% had suffered a secondary meniscus injury. Of the ACL reconstructed subjects, 67% were classified as copers at follow-up. Non-operated ACL-deficient children demonstrated excellent knee function on performance-based single-legged hop tests and 65% had returned to pre-injury activity level. Delayed ACL reconstruction resulted in success for a majority of the ACL-reconstructed children. Treatment algorithms for ACL-injured children are discussed.
Similar content being viewed by others
References
Aichroth PM, Patel DV, Zorrilla P (2002) The natural history and treatment of rupture of the anterior cruciate ligament in children and adolescents. A prospective review. J Bone Joint Surg Br 84:38–41
Arbes S, Resinger C, Vecsei V, Nau T (2006) The functional outcome of total tears of the anterior cruciate ligament (ACL) in the skeletally immature patient. Int Orthop 31(4):471–475
Bales CP, Guettler JH, Moorman CT III (2004) Anterior cruciate ligament injuries in children with open physes: evolving strategies of treatment. Am J Sports Med 32:1978–1985
Baxter MP (1988) Assessment of normal pediatric knee ligament laxity using the genucom. J Pediatr Orthop 8:546–550
Beasley LS, Chudik SC (2003) Anterior cruciate ligament injury in children: update of current treatment options. Curr Opin Pediatr 15:45–52
Beynnon BD, Fleming BC, Churchill DL, Brown D (2003) The effect of anterior cruciate ligament deficiency and functional bracing on translation of the tibia relative to the femur during nonweightbearing and weightbearing. Am J Sports Med 31:99–105
Beynnon BD, Good L, Risberg MA (2002) The effect of bracing on proprioception of knees with anterior cruciate ligament injury. J Orthop Sports Phys Ther 32:11–15
Beynnon BD, Johnson RJ, Abate JA, et al (2005) Treatment of anterior cruciate ligament injuries, part I. Am J Sports Med 33:1579–1602
Button K, van Deursen R, Price P (2006) Classification of functional recovery of anterior cruciate ligament copers, non-copers, and adapters. Br J Sports Med 40:853–859
Daniel DM, Stone ML, Sachs R, Malcom L (1985) Instrumented measurement of anterior knee laxity in patients with acute anterior cruciate ligament disruption. Am J Sports Med 13:401–407
Eastlack ME, Axe MJ, Snyder-Mackler L (1999) Laxity, instability, and functional outcome after ACL injury: copers versus noncopers. Med Sci Sports Exerc 31:210–215
Edwards PH, Grana WA (2001) Anterior cruciate ligament reconstruction in the immature athlete: long-term results of intra-articular reconstruction. Am J Knee Surg 14:232–237
Fehnel DJ, Johnson R (2000) Anterior cruciate injuries in the skeletally immature athlete: a review of treatment outcomes. Sports Med 29:51–63
Fink C, Hoser C, Hackl W et al (2001) Long-term outcome of operative or nonoperative treatment of anterior cruciate ligament rupture—is sports activity a determining variable? Int J Sports Med 22:304–309
Fitzgerald GK, Axe MJ, Snyder-Mackler L (2000) A decision-making scheme for returning patients to high-level activity with nonoperative treatment after anterior cruciate ligament rupture. Knee Surg Sports Traumatol Arthrosc 8:76–82
Fitzgerald GK, Axe MJ, Snyder-Mackler L (2000) Proposed practice guidelines for nonoperative anterior cruciate ligament rehabilitation of physically active individuals. J Orthop Sports Phys Ther 30:194–203
Fitzgerald GK, Lephart SM, Hwang JH, Wainner RS (2001) Hop tests as predictors of dynamic knee stability. J Orthop Sports Phys Ther 31:588–597
Graf BK, Lange RH, Fujisaki CK, et al (1992) Anterior cruciate ligament tears in skeletally immature patients: meniscal pathology at presentation and after attempted conservative treatment. Arthroscopy 8:229–233
Gustavsson A, Neeter C, Thomee P, et al (2006) A test battery for evaluating hop performance in patients with an ACL injury and patients who have undergone ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 14:778–788
Hefti F, Muller W, Jakob RP, Staubli HU (1993) Evaluation of knee ligament injuries with the IKDC form. Knee Surg Sports Traumatol Arthrosc 1:226–234
Herrington L, Fowler E (2006) A systematic literature review to investigate if we identify those patients who can cope with anterior cruciate ligament deficiency. Knee 13:260–265
Hewett TE, Myer GD, Ford KR (2006) Anterior cruciate ligament injuries in female athletes. Part 1, mechanisms and risk factors. Am J Sports Med 34:299–311
Irrgang JJ, Anderson AF, Boland AL, et al (2001) Development and validation of the international knee documentation committee subjective knee form. Am J Sports Med 29:600–613
Irrgang JJ, Snyder-Mackler L, Wainner RS et al (1998) Development of a patient-reported measure of function of the knee. J Bone Joint Surg Am 80:1132–1145
Itoh H, Kurosaka M, Yoshiya S et al (1998) Evaluation of functional deficits determined by four different hop tests in patients with anterior cruciate ligament deficiency. Knee Surg Sports Traumatol Arthrosc 6:241–245
Janarv PM, Nystrom A, Werner S, Hirsch G (1996) Anterior cruciate ligament injuries in skeletally immature patients. J Pediatr Orthop 16:673–677
Kannus P, Jarvinen M (1988) Knee ligament injuries in adolescents. Eight-year follow-up of conservative management. J Bone Joint Surg Br 70:772–776
Kocabey Y, Tetik O, Isbell WM et al (2004) The value of clinical examination versus magnetic resonance imaging in the diagnosis of meniscal tears and anterior cruciate ligament rupture. Arthroscopy 20:696–700
Kocher MS, DiCanzio J, Zurakowski D, Micheli LJ (2001) Diagnostic performance of clinical examination and selective magnetic resonance imaging in the evaluation of intraarticular knee disorders in children and adolescents. Am J Sports Med 29:292–296
Kocher MS, Garg S, Micheli LJ (2005) Physeal sparing reconstruction of the anterior cruciate ligament in skeletally immature prepubescent children and adolescents. J Bone Joint Surg Am 87:2371–2379
Lee K, Siegel MJ, Lau DM et al (1999) Anterior cruciate ligament tears: MR imaging-based diagnosis in a pediatric population. Radiology 213:697–704
Lewek MD, Chmielewski TL, Risberg MA, Snyder-Mackler L (2003) Dynamic knee stability after anterior cruciate ligament rupture. Exerc Sport Sci Rev 31:195–200
Lysholm J, Gillquist J (1982) Evaluation of knee ligament surgery results with special emphasis on use of a scoring scale. Am J Sports Med 10:150–154
Major NM, Beard LN Jr, Helms CA (2003) Accuracy of MR imaging of the knee in adolescents. AJR Am J Roentgenol 180:17–19
McCarroll JR, Rettig AC, Shelbourne KD (1988) Anterior cruciate ligament injuries in the young athlete with open physes. Am J Sports Med 16(1):44–47
McCarroll JR, Shelbourne KD, Patel DV (1995) Anterior cruciate ligament injuries in young athletes. Recommendations for treatment and rehabilitation. Sports Med 20:117–127
McCarroll JR, Shelbourne KD, Porter DA et al (1994) Patellar tendon graft reconstruction for midsubstance anterior cruciate ligament rupture in junior high school athletes. An algorithm for management. Am J Sports Med 22:478–484
Micheli LJ, Rask B, Gerberg L (1999) Anterior cruciate ligament reconstruction in patients who are prepubescent. Clin Orthop Relat Res 364:40–47
Millett PJ, Willis AA, Warren RF (2002) Associated injuries in pediatric and adolescent anterior cruciate ligament tears: does a delay in treatment increase the risk of meniscal tear? Arthroscopy 18:955–959
Mizuta H, Kubota K, Shiraishi M, et al (1995) The conservative treatment of complete tears of the anterior cruciate ligament in skeletally immature patients. J Bone Joint Surg Br 77:890–894
Mohtadi N, Grant J (2006) Managing anterior cruciate ligament deficiency in the skeletally immature individual: a systematic review of the literature. Clin J Sport Med 16:457–464
Myer GD, Paterno MV, Ford KR et al (2006) Rehabilitation after anterior cruciate ligament reconstruction: criteria-based progression through the return-to-sport phase. J Orthop Sports Phys Ther 36:385–402
Noyes FR, Barber SD, Mangine RE (1991) Abnormal lower limb symmetry determined by function hop tests after anterior cruciate ligament rupture. Am J Sports Med 19:513–8
O’Donnell S, Thomas SG, Marks P (2006) Improving the sensitivity of the hop index in patients with an ACL deficient knee by transforming the hop distance scores. BMC Musculoskelet Disord 7:9
Ostenberg A, Roos E, Ekdahl C, Roos H (1998) Isokinetic knee extensor strength and functional performance in healthy female soccer players. Scand J Med Sci Sports 8:257–264
Pressman AE, Letts RM, Jarvis JG (1997) Anterior cruciate ligament tears in children: an analysis of operative versus nonoperative treatment. J Pediatr Orthop 17(4):505–511
Risberg MA, Holm I, Ekeland A (1995) Reliability of functional knee tests in normal athletes. Scand J Med Sci Sports 5:24–28
Seon JK, Song EK, Yoon TR, Park SJ (2005) Transphyseal reconstruction of the anterior cruciate ligament using hamstring autograft in skeletally immature adolescents. J Korean Med Sci 20:1034–1038
Shea KG, Apel PJ, Pfeiffer RP (2003) Anterior cruciate ligament injury in paediatric and adolescent patients: a review of basic science and clinical research. Sports Med 33:455–471
Snyder-Mackler L, Fitzgerald GK, Bartolozzi AR III, Ciccotti MG (1997) The relationship between passive joint laxity and functional outcome after anterior cruciate ligament injury. Am J Sports Med 25:191–195
Stanitski CL, Harvell JC, Fu F (1993) Observations on acute knee hemarthrosis in children and adolescents. J Pediatr Orthop 13:506–510
Steadman JR, Cameron-Donaldson ML, Briggs KK, Rodkey WG (2006). A minimally invasive technique (“healing response”) to treat proximal ACL injuries in skeletally immature athletes. J Knee Surg 19:8–13
Vahasarja V, Kinnuen P, Serlo W (1993) Arthroscopy of the acute traumatic knee in children. Prospective study of 138 cases. Acta Orthop Scand 64:580–582
Woods GW, O’Connor DP (2004) Delayed anterior cruciate ligament reconstruction in adolescents with open physes. Am J Sports Med 32:201–210
Wroble RR, Van Ginkel LA, Grood ES, et al (1990) Repeatability of the KT-1000 arthrometer in a normal population. Am J Sports Med 18:396–399
Acknowledgments
This investigation was made possible by our funding institution, the Eastern Norway Regional Health. We also thank our research coordinator, Linn Gjersing, for her efforts in organizing the logistics for the project.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Moksnes, H., Engebretsen, L. & Risberg, M.A. Performance-based functional outcome for children 12 years or younger following anterior cruciate ligament injury: a two to nine-year follow-up study. Knee Surg Sports Traumatol Arthr 16, 214–223 (2008). https://doi.org/10.1007/s00167-007-0469-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00167-007-0469-7