Skip to main content
Log in

Fatigue alters lower extremity kinematics during a single-leg stop-jump task

  • Experimental Study
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

To examine the kinematic characteristics of the hip and knee during a single-leg stop-jump task before and after exercise-to-fatigue, and to determine if the fatigue response is gender-dependent. Lower extremity kinematic measurements were taken of male and female subjects while they performed a sports functional task before and after fatigue developed from exhaustive running. Thirty healthy, physically active subjects (15 males and 15 females) Knee and hip joint kinematics were calculated utilizing three-dimensional video analysis. Each subject performed five single-leg stop-jumps before and after an exercise-to-fatigue bout. All subjects underwent a fatigue protocol using the modified Astrand protocol. Fatigue was verified using the Rating of Perceived Exertion along with the subject’s heart rate. All data were analyzed using two factor (test × gender) repeated measures ANOVA (< 0.05). Both males and females demonstrated significantly less maximal knee valgus (P = 0.038) and decreased knee flexion at initial contact (= 0.009) post-fatigue. No significant differences were identified in hip joint angles between sessions or between sexes. The results show that fatigue developed from exhaustive running alters lower extremity kinematics during a single-leg stop-jump task. The more neutral position in the frontal plane might be an effort to protect the knee. The decrease in knee flexion at initial contact may be an attempt to increase knee stability following fatigue. Our results did not reveal any gender differences in this specific task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boden BP, Dean GS, Feagin JA Jr, Garrett WE Jr (2000) Mechanisms of anterior cruciate ligament injury. Orthopedics 23:573–578

    PubMed  CAS  Google Scholar 

  2. Noyes FR, Matthews DS, Mooar PA, Grood ES (1983) The symptomatic anterior cruciate-deficient knee. Part II: the results of rehabilitation, activity modification, and counseling on functional disability. J Bone Joint Surg Am 65:163–174

    PubMed  CAS  Google Scholar 

  3. Harmon KG, Ireland ML (2000) Gender differences in noncontact anterior cruciate ligament injuries. Clin Sports Med 19:287–302

    Article  PubMed  CAS  Google Scholar 

  4. Griffin LY, Albohm MJ, Arendt EA et al (2006) Understanding and preventing noncontact anterior cruciate ligament injuries: a review of the Hunt Valley II meeting, January 2005. Am J Sports Med 34:1512–1532

    Article  PubMed  Google Scholar 

  5. Chappell JD, Herman DC, Knight BS, Kirkendall DT, Garrett Jr WE, Yu B (2005) Effect of fatigue on knee kinetics and kinematics in stop-jump tasks. Am J Sports Med 33:1022–1029

    Article  PubMed  Google Scholar 

  6. Rodacki AL, Fowler NE, Bennett SJ (2001) Multi-segment coordination: fatigue effects. Med Sci Sports Exerc 33:1157–1167

    PubMed  CAS  Google Scholar 

  7. Feagin JA Jr, Lambert KL, Cunningham RR et al (1987) Consideration of the anterior cruciate ligament injury in skiing. Clin Orthop Rel Res 216:13–18

    Google Scholar 

  8. Gabbett TJ (2000) Incidence, site, and nature of injuries in amateur rugby league over three consecutive seasons. Br J Sports Med 34:98–103

    Article  PubMed  CAS  Google Scholar 

  9. Gabbett TJ (2004) Incidence of injury in junior and senior rugby league players. Sports Med 34:849–859

    Article  PubMed  Google Scholar 

  10. Molsa J, Airaksinen O, Nasman O, Torstila I (1997) Ice hockey injuries in Finland. A prospective epidemiologic study. Am J Sports Med 25:495–499

    Article  PubMed  CAS  Google Scholar 

  11. Pettrone FA, Ricciardelli E (1987) Gymnastic injuries: the Virginia experience 1982–1983. Am J Sports Med 15:59–62

    Article  PubMed  CAS  Google Scholar 

  12. Stuart MJ, Smith A (1995) Injuries in Junior A ice hockey. A three-year prospective study. Am J Sports Med 23:458–461

    Article  PubMed  CAS  Google Scholar 

  13. Johnston RB 3rd, Howard ME, Cawley PW, Losse GM (1998) Effect of lower extremity muscular fatigue on motor control performance. Med Sci Sports Exerc 30:1703–1707

    Article  PubMed  Google Scholar 

  14. Wojtys EM, Wylie BB, Huston LJ (1996) The effects of muscle fatigue on neuromuscular function and anterior tibial translation in healthy knees. Am J Sports Med 24:615–621

    Article  PubMed  CAS  Google Scholar 

  15. Skinner HB, Wyatt MP, Stone ML, Hodgdon JA, Barrack RL (1986) Exercise-related knee joint laxity. Am J Sports Med 14:30–34

    Article  PubMed  CAS  Google Scholar 

  16. Rozzi SL, Lephart SM, Fu FH (1999) Effects of muscular fatigue on knee joint laxity and neuromuscular characteristics of male and female athletes. J Athl Train 34:106–114

    PubMed  CAS  Google Scholar 

  17. Hiemstra LA, Lo IK, Fowler PJ (2001) Effect of fatigue on knee proprioception: implications for dynamic stabilization. J Orthop Sports Phys Ther 31:598–605

    PubMed  CAS  Google Scholar 

  18. Lattanzio PJ, Petrella RJ (1998) Knee proprioception: a review of mechanisms, measurements, and implications of muscular fatigue. Orthopedics 21:463–470

    PubMed  CAS  Google Scholar 

  19. Lattanzio PJ, Petrella RJ, Sproule JR, Fowler PJ (1997) Effects of fatigue on knee proprioception. Clin J Sport Med 7:22–27

    Article  PubMed  CAS  Google Scholar 

  20. Miura K, Ishibashi Y, Tsuda E, Okamura Y, Otsuka H, Toh S (2004) The effect of local and general fatigue on knee proprioception. Arthroscopy 20:414–418

    Article  PubMed  Google Scholar 

  21. Nyland JA, Shapiro R, Caborn DN, Nitz AJ, Malone TR (1997) The effect of quadriceps femoris, hamstring, and placebo eccentric fatigue on knee and ankle dynamics during crossover cutting. J Orthop Sports Phys Ther 25:171–184

    PubMed  CAS  Google Scholar 

  22. McLean SG, Felin RE, Suedekum N, Calabrese G, Passerallo A, Joy S (2007) Impact of fatigue on gender-based high-risk landing strategies. Med Sci Sports Exerc 39:502–514

    Article  PubMed  Google Scholar 

  23. Vaughan C, Davis BL, O’Connor JC (1999) Dynamics of Human Gait. 2nd edn. Kiboho, Cape Town

    Google Scholar 

  24. Chao EY (1980) Justification of triaxial goniometer for the measurement of joint rotation. J Biomech 13:989–1006

    Article  PubMed  CAS  Google Scholar 

  25. Grood ES, Suntay WJ (1983) A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng 105:136–144

    Article  PubMed  CAS  Google Scholar 

  26. Olsen OE, Myklebust G, Engebretsen L, Bahr R (2004) Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis. Am J Sports Med 32:1002–1012

    Article  PubMed  Google Scholar 

  27. McLean SG, Huang X, van den Bogert AJ (2005) Association between lower extremity posture at contact and peak knee valgus moment during sidestepping: implications for ACL injury. Clin Biomech (Bristol, Avon) 20:863–870

    Article  Google Scholar 

  28. Yu B, Lin CF, Garrett WE (2006) Lower extremity biomechanics during the landing of a stop-jump task. Clin Biomech (Bristol, Avon) 21:297–305

    Article  Google Scholar 

  29. Kang J, Chaloupka EC, Mastrangelo MA, Biren GB, Robertson RJ (2001) Physiological comparisons among three maximal treadmill exercise protocols in trained and untrained individuals. Eur J Appl Physiol 84:291–295

    Article  PubMed  CAS  Google Scholar 

  30. Pollock LM, Wilmore JH, Fox SM (1978) Health and fitness through physical activity. Wiley, New York, p 59

    Google Scholar 

  31. Borg GA (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14:377–381

    PubMed  CAS  Google Scholar 

  32. Wilmore JH, Costill DL (1994) Physiology of sport and exercise. Human Kinetics, Champaign

    Google Scholar 

  33. Jackson KM (1979) Fitting of mathematical functions to biomechanical data. IEEE Trans Biomed Eng 26:122–124

    Article  PubMed  CAS  Google Scholar 

  34. Toth AP, Cordasco FA (2001) Anterior cruciate ligament injuries in the female athlete. J Gender Spec Med 4:25–34

    CAS  Google Scholar 

  35. Arendt EA, Agel J, Dick R (1999) Anterior cruciate ligament injury patterns among collegiate men and women. J Athl Train 34:86–92

    PubMed  CAS  Google Scholar 

  36. Ireland ML (1999) Anterior cruciate ligament injury in female athletes: epidemiology. J Athl Train 34:150–154

    PubMed  CAS  Google Scholar 

  37. Arms SW, Pope MH, Johnson RJ, Fischer RA, Arvidsson I, Eriksson E (1984) The biomechanics of anterior cruciate ligament rehabilitation and reconstruction. Am J Sports Med 12:8–18

    Article  PubMed  CAS  Google Scholar 

  38. Bendjaballah MZ, Shirazi-Adl A, Zukor DJ (1997) Finite element analysis of human knee joint in varus–valgus. Clin Biomech (Bristol, Avon) 12:139–148

    Article  Google Scholar 

  39. Kanamori A, Woo SL, Ma CB et al (2000) The forces in the anterior cruciate ligament and knee kinematics during a simulated pivot shift test: a human cadaveric study using robotic technology. Arthrosc 16:633–639

    CAS  Google Scholar 

  40. Markolf KL, Burchfield DM, Shapiro MM, Shepard MF, Finerman GA, Slauterbeck JL (1995) Combined knee loading states that generate high anterior cruciate ligament forces. J Orthop Res 13:930–935

    Article  PubMed  CAS  Google Scholar 

  41. Markolf KL, Mensch JS, Amstutz HC (1976) Stiffness and laxity of the knee—the contributions of the supporting structures. A quantitative in vitro study. J Bone Joint Surg Am 58:583–594

    PubMed  CAS  Google Scholar 

  42. Markolf KL, Gorek JF, Kabo JM, Shapiro MS (1990) Direct measurement of resultant forces in the anterior criciate ligament. An in vitro study performed with a new experimental technique. J Bone Joint Surg Am 72:557–567

    PubMed  CAS  Google Scholar 

  43. Sakane M, Fox RJ, Woo SL, Livesay GA, Li G, Fu FH (1997) In situ forces in the anterior cruciate ligament and its bundles in response to anterior tibial loads. J Orthop Res 15:285–293

    Article  PubMed  CAS  Google Scholar 

  44. Fleming BC, Renstrom PA, Ohlen G et al (2001) The gastrocnemius muscle is and antagonist of the anterior cruciate ligament. J Orthop Res 19:1178–1184

    Article  PubMed  CAS  Google Scholar 

  45. Lepers R, Hausswirth C, Maffiuletti N, Brisswalter J, van Hoecke J (2000) Evidence of neuromuscular fatigue after prolonged cycling exercise. Med Sci Sports Exerc 32:1880–1886

    Article  PubMed  CAS  Google Scholar 

  46. Dufek JS, Bates BT (1990) The evaluation and prediction of impact forces during landings. Med Sci Sports Exerc 22:370–377

    PubMed  CAS  Google Scholar 

  47. Moore BD, Drouin J, Gansneder BM, Shultz SJ (2002) The differential effects of fatigue on reflex response timing and amplitude in males and females. J Electromyogr Kinesiol 12:351–360

    Article  PubMed  Google Scholar 

  48. Nyland JA, Shapiro R, Stine RL, Horn TS, Ireland ML (1994) Relationship of fatigued run and rapid stop to ground reaction forces, lower extremity kinematics, and muscle activation. J Orthop Sports Phys Ther 20:132–137

    PubMed  CAS  Google Scholar 

  49. Cerullo JF (2000) The effect of lower extremity muscle fatigue on vertical ground reaction forces and muscle activation patterns during landing. Doctoral dissertation

Download references

Acknowledgments

Research was funded by a grant from the National Athletic Trainers’ Association Research and Education Foundation Osternig masters grant program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy C. Sell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benjaminse, A., Habu, A., Sell, T.C. et al. Fatigue alters lower extremity kinematics during a single-leg stop-jump task. Knee Surg Sports Traumatol Arthr 16, 400–407 (2008). https://doi.org/10.1007/s00167-007-0432-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-007-0432-7

Keywords

Navigation