Skip to main content

Advertisement

Log in

Technical note: the “double eye” technique as a modification of autologous chondrocyte implantation for the treatment of retropatellar cartilage defects

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Retropatellar cartilage defects treated with autologous chondrocyte implantation (ACI) are still associated with inferior clinical outcome compared to defects being located on the femoral condyles. This is partly because of the biomechanical characteristics of the patellofemoral section of the joint, in which, in contrast to the medial or lateral compartments of the knee joint, prejudicial shearing forces are dominant. The patellar ridge has a particularly important role in the reduction of these shearing forces. The double eye technique was developed as a modification of ACI with preserving the important patellar ridge for the treatment of retropatellar cartilage defects extending beyond the patellar ridge and involving the medial and lateral retropatellar facets. This technique provides for a separate reconstruction of the medial and the lateral facets by means of ACI, but the ridge region is preserved to maintain the original thickness of cartilage at this point. The present paper describes the “double eye” technique as a modification of autologous chondrocyte transplantation (ACI) for treatment of cartilage defects of the patella, that involve both lateral and medial facets, and gives first clinical results of 11 patients. The average follow-up was 41.6 (±15.0) months, and the average age at diagnosis was 40.4 (±10.1) years. The Lysholm score, the subjective IKDC score, and the ICRS score were the instruments used to measure the outcome. This paper focuses on the introduction of the double eye technique with preservation of the patella ridge in the treatment of retropatellar cartilage lesion. Nevertheless, first clinical results of 11 patients are given, with an average Lysholm score of 75 (±14) points and an average subjective IKDC score of 60 (±14). Objective evaluation according to the criteria of the IKDC score showed very good or good treatment results in 9 of the 11 cases, with only 2 poor results. In conclusion, with the double eye modification presented in this paper, the potential for successful results in the treatment of combined cartilage defects of the medial and lateral facets of the patella is high; it takes into account the specific biomechanical properties of the patella ridge. The procedure needs further evaluation in clinical studies involving larger numbers of patients so that the indications can be determined more precisely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Amis AA, Senavongse W, Bull AM (2006) Patellofemoral kinematics during knee flexion–extension: an in vitro study. J Orthop Res 24(12):2201–2211

    Article  PubMed  Google Scholar 

  2. Amis AA, Senavongse W, Darcy P (2005) Biomechanics of patellofemoral joint prostheses. Clin Orthop Relat Res 436:20–29

    Article  PubMed  Google Scholar 

  3. Asano T, Akagi M, Koike K, Nakamura T (2003) In vivo three-dimensional patellar tracking on the femur. Clin Orthop Relat Res 413:222–232

    Article  PubMed  Google Scholar 

  4. Bentley G, Biant LC, Carrington RW, Akmal M, Goldberg A, Williams AM, Skinner JA, Pringle J (2003) A prospective, randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee. J Bone Joint Surg Br 85(2):223–230

    Article  PubMed  CAS  Google Scholar 

  5. Breinan HA, Martin SD, Hsu HP, Spector M (2000) Healing of canine articular cartilage defects treated with microfracture, a type-II collagen matrix, or cultured autologous chondrocytes. J Orthop Res 18(5):781–789

    Article  PubMed  CAS  Google Scholar 

  6. Breinan HA, Minas T, Hsu HP, Nehrer S, Sledge CB, Spector M (1997) Effect of cultured autologous chondrocytes on repair of chondral defects in a canine model. J Bone Joint Surg Am 79(10):1439–1451

    PubMed  CAS  Google Scholar 

  7. Brittberg M (2000) ICRS clinical cartilage injury evaluation system. 3rd ICRS meeting, Göteborg, Sweden

  8. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331(14):889–895

    Article  PubMed  CAS  Google Scholar 

  9. Brittberg M, Winalski CS (2003) Evaluation of cartilage injuries and repair. J Bone Joint Surg Am 85-A(Suppl 2):58–69

    PubMed  Google Scholar 

  10. Fitzgerald JB, Jin M, Grodzinsky AJ (2006) Shear and compression differentially regulate clusters of functionally related temporal transcription patterns in cartilage tissue. J Biol Chem 281(34):24095–24103

    Article  PubMed  CAS  Google Scholar 

  11. Goodfellow J, Hungerford DS, Woods C (1976) Patello-femoral joint mechanics and pathology. 2. Chondromalacia patellae. J Bone Joint Surg Br 58(3):291–299

    PubMed  CAS  Google Scholar 

  12. Goodfellow J, Hungerford DS, Zindel M (1976) Patello-femoral joint mechanics and pathology. 1. Functional anatomy of the patello-femoral joint. J Bone Joint Surg Br 58(3):287–290

    PubMed  CAS  Google Scholar 

  13. Gooding CR, Bartlett W, Bentley G, Skinner JA, Carrington R, Flanagan A (2006) A prospective, randomised study comparing two techniques of autologous chondrocyte implantation for osteochondral defects in the knee: periosteum covered versus type I/III collagen covered. Knee 13(3):203–210

    Article  PubMed  CAS  Google Scholar 

  14. Grodzinsky AJ, Levenston ME, Jin M, Frank EH (2000) Cartilage tissue remodeling in response to mechanical forces. Ann Rev Biomed Eng 2:691–713

    Article  CAS  Google Scholar 

  15. Hangody L, Feczko P, Bartha L, Bodo G, Kish G (2001) Mosaicplasty for the treatment of articular defects of the knee and ankle. Clin Orthop Relat Res 391 Suppl:S328–S336

    Article  PubMed  Google Scholar 

  16. Hehne HJ (1990) Biomechanics of the patellofemoral joint and its clinical relevance. Clin Orthop Relat Res 258:73–85

    PubMed  Google Scholar 

  17. Huberti HH, Hayes WC (1984) Patellofemoral contact pressures. The influence of q-angle and tendofemoral contact. J Bone Joint Surg Am 66(5):715–724

    PubMed  CAS  Google Scholar 

  18. Kreuz PC, Erggelet C, Steinwachs MR, Krause SJ, Lahm A, Niemeyer P, Ghanem N, Uhl M, Sudkamp N (2006) Is microfracture of chondral defects in the knee associated with different results in patients aged 40 years or younger? Arthroscopy 22(11):1180–1186

    Article  PubMed  Google Scholar 

  19. Kreuz PC, Steinwachs MR, Erggelet C, Krause SJ, Konrad G, Uhl M, Sudkamp N (2006) Results after microfracture of full-thickness chondral defects in different compartments in the knee. Osteoarthr Cartil 14(11):1119–1125

    Article  PubMed  CAS  Google Scholar 

  20. Lane Smith R, Trindade MC, Ikenoue T, Mohtai M, Das P, Carter DR, Goodman SB, Schurman DJ (2000) Effects of shear stress on articular chondrocyte metabolism. Biorheology 37(1–2):95–107

    PubMed  CAS  Google Scholar 

  21. Lorentzon R, Alfredson H, Hildingsson C (1998) Treatment of deep cartilage defects of the patella with periosteal transplantation. Knee Surg Sports Traumatol Arthrosc 6(4):202–208

    Article  PubMed  CAS  Google Scholar 

  22. Lysholm J, Gillquist J (1982) Evaluation of knee ligament surgery results with special emphasis on use of a scoring scale. Am J Sports Med 10(3):150–154

    Article  PubMed  CAS  Google Scholar 

  23. Matsuda S, Ishinishi T, Whiteside LA (2000) Contact stresses with an unresurfaced patella in total knee arthroplasty: the effect of femoral component design. Orthopedics 23(3):213–218

    PubMed  CAS  Google Scholar 

  24. Mesfar W, Shirazi-Adl A (2005) Biomechanics of the knee joint in flexion under various quadriceps forces. Knee 12(6):424–434

    Article  PubMed  CAS  Google Scholar 

  25. Minas T, Bryant T (2005) The role of autologous chondrocyte implantation in the patellofemoral joint. Clin Orthop Relat Res 436:30–39

    Article  PubMed  Google Scholar 

  26. Noyes FR, Barber SD, Mooar LA (1989) A rationale for assessing sports activity levels and limitations in knee disorders. Clin Orthop Relat Res 246:238–249

    PubMed  Google Scholar 

  27. Oishi CS, Kaufman KR, Irby SE, Colwell CW Jr. (1996) Effects of patellar thickness on compression and shear forces in total knee arthroplasty. Clin Orthop Relat Res 331:283–290

    Article  PubMed  Google Scholar 

  28. Peterson L, Brittberg M, Kiviranta I, Akerlund EL, Lindahl A (2002) Autologous chondrocyte transplantation. Biomechanics and long-term durability. Am J Sports Med 30(1):2–12

    PubMed  Google Scholar 

  29. Peterson L, Minas T, Brittberg M, Nilsson A, Sjogren-Jansson E, Lindahl A (2000) Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop Relat Res 374:212–234

    Article  PubMed  Google Scholar 

  30. Pidoriano AJ, Weinstein RN, Buuck DA, Fulkerson JP (1997) Correlation of patellar articular lesions with results from anteromedial tibial tubercle transfer. Am J Sports Med 25(4):533–537

    Article  PubMed  CAS  Google Scholar 

  31. Staubli HU, Durrenmatt U, Porcellini B, Rauschning W (1999) Anatomy and surface geometry of the patellofemoral joint in the axial plane. J Bone Joint Surg Br 81(3):452–458

    Article  PubMed  CAS  Google Scholar 

  32. Steinwachs MR, Kreuz PC (2003). Clinical results of autologous chondrocyte transplantation (ACT) using a collagen membrane cartilage surgery and future perspectives. Cartilage surgery and future perspectives. ed N. Hendrich, Eulert. Chap 5, pp 37–47

  33. Steinwachs MR, Kreuz PC, Krause SJ, Lahm A (2003) Klinische Ergebnisse nach Mikrofrakturierung bei der Behandlung von Gelenkknorpeldefekten. Sportorthopädie - Sporttraumatologie 19:291–294

    Google Scholar 

  34. Torzilli PA, Deng XH, Ramcharan M (2006) Effect of compressive strain on cell viability in statically loaded articular cartilage. Biomech Model Mechanobiol 5(2–3):123–32

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Niemeyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niemeyer, P., Kreuz, P.C., Steinwachs, M. et al. Technical note: the “double eye” technique as a modification of autologous chondrocyte implantation for the treatment of retropatellar cartilage defects. Knee Surg Sports Traumatol Arthr 15, 1461–1468 (2007). https://doi.org/10.1007/s00167-007-0393-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-007-0393-x

Keywords

Navigation