Skip to main content

Advertisement

Log in

Histological changes and apoptosis of cartilage layer in human anterior cruciate ligament tibial insertion after rupture

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

The purpose of this study is to investigate the histological changes and apoptosis of cartilaginous layers in human anterior cruciate ligament (ACL) tibial insertion at different time periods after rupture. By using a core reamer, 35 tibial insertions of ruptured ACLs were obtained during primary ACL reconstructions (number of days after injury: 19–206 days). A histological examination was performed and a terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling (TUNEL) staining assay was carried out to detect apoptosis. The average thickness of the cartilage layer, the glycosaminoglycan-stained area and the number of chondrocytes per millimeter decreased with time. The percentage average of TUNEL-positive chondrocytes was 42.0 ± 16.2. The histological degenerative changes of the cartilage layer in the ruptured ACL tibial insertion progressed with time, especially in the first 2 months. Moreover, chondrocyte apoptosis continued from 19 to 206 days after rupture. The results may help elucidate the etiology of the histological changes of the insertion, and may help in devising optimal treatment protocols for ACL injuries if apoptosis is controlled. Moreover, we consider that using a surviving ligament and minimizing a debridement of ACL remnant during ACL reconstruction may be important for ACL reconstruction to maintain cartilage layers in ACL insertions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adams CS, Horton WE Jr (1998) Chondrocyte apoptosis increases with time age in the articular cartilage of adult animals. Anat Rec 250:418–425

    Article  PubMed  CAS  Google Scholar 

  2. Ariga K, Yonenobu K, Nakase T, Hosono N, Okuda S, Meng W, Tamura Y, Yoshikawa H (2003) Mechanical stress-induced apoptosis of endplate chondrocytes in organ-cultured mouse intervertebral discs: an ex vivo study. Spine 28:1528–1533

    Article  PubMed  Google Scholar 

  3. Arnoczky SP, Tian T, Lavagnino M, Gardner K, Schuler P, Morse P (2002) Activation of stress-activated protein kinases (SAPK) in tendon cells following cyclic strain: the effects of strain frequency, strain magnitude, and cytosolic calcium. J Orthop Res 20:947–952

    Article  PubMed  CAS  Google Scholar 

  4. Barrack RL, Skinner HB, Buckley SL (1989) Proprioception in the anterior cruciate deficient knee. Am J Sports Med 17:1–6

    PubMed  CAS  Google Scholar 

  5. Benjamin M, Evans EJ, Copp L (1986) The histology of tendon attachments to bone in man. J Anat 149:89–100

    PubMed  CAS  Google Scholar 

  6. Cohen JJ (1993) Apoptosis. Immunol Today 14:126–130

    Article  PubMed  CAS  Google Scholar 

  7. Cooper RR, Misol S (1970) Tendon and ligament insertion: a light and electron microscopic study. J Bone Joint Surg [Am] 52:1–20

    CAS  Google Scholar 

  8. Giori NJ, Beaupré GS, Carter DR (1993) Cellular shape and pressure may mediate mechanical control of tissue composition in tendons. J Orthop Res 11:581–591

    Article  PubMed  CAS  Google Scholar 

  9. Golstein P (1997) Controlling cell death. Science 275:1081–1082

    Article  PubMed  CAS  Google Scholar 

  10. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    Article  PubMed  CAS  Google Scholar 

  11. Hannafin JA, Arnoczky SP, Hoonjan A, Torzilli PA (1995) Effect of stress deprivation and cyclic tensile loading on the material and morphologic properties of canine flexor digitorum profundus tendon: an in vitro study. J Orthop Res 13:907–914

    Article  PubMed  CAS  Google Scholar 

  12. Haapala J, Arokoski JPA, Hyttinen MM, Lammi M, Tammi M, Kovanen V, Helminen HJ, Kiviranta I (1999) Remobilization does not fully restore immobilization induced articular cartilage atrophy. Clin Orthop 362:218–229

    PubMed  Google Scholar 

  13. Jurvelin J, Kiviranta I, Tammi M, Helminen JH (1986) Softening of canine articular cartilage after immobilization of the knee joint. Clin Orthop 207:246–252

    PubMed  Google Scholar 

  14. Kanda T, Ochi M, Ikuta Y (1998) Adverse effects on rabbit anterior cruciate ligament after knee immobilization: changes in permeability of horseradish peroxidase. Arch Orthop Trauma Surg 117:307–311

    Article  PubMed  CAS  Google Scholar 

  15. Keira M, Yasuda K, Kaneda K, Yamamoto N, Hayashi K (1996) Mechanical properties of the anterior cruciate ligament chronically relaxed by elevation of the tibial insertion. J Orthop Res 14:157–166

    Article  PubMed  CAS  Google Scholar 

  16. Klein L, Player JS, Heiple KG, Bahniuk E, Goldberg VM (1982) Isotopic evidence for resorption of soft tissues and bone in immobilized dogs. J Bone Joint Surg [Am] 64:225–230

    CAS  Google Scholar 

  17. Murray MM, Martin SD, Martin TL, Spector M (2000) Histological changes in the human anterior cruciate ligament after rupture. J Bone Joint Surg [Am] 82:1387–1397

    Google Scholar 

  18. Murrel GAC, Maddali S, Horovitaz L, Okaley SP, Warren RF (2001) The effects of time course after anterior cruciate ligament injury in correlation with meniscal and cartilage loss. Am J Sports Med 29:9–14

    Google Scholar 

  19. Nabeshima Y, Grood ES, Sakurai A, Herman JH (1996) Uniaxial tension inhibits tendon collagen degradation by collagenase in vitro. J Orthop Res 14:123–130

    Article  PubMed  CAS  Google Scholar 

  20. Nawata K, Minamizawa T, Yamashita Y, Teshima R (2002) Development of the attachment zones in the rat anterior cruciate ligament: changes in the distribution of proliferating cells and fibrillar collagen during postnatal growth. J Orthop Res 20:1339–1344

    Article  PubMed  CAS  Google Scholar 

  21. Newton PO, Woo SL-Y, MacKenna DA, Akeson WH (1995) Immobilization of the knee joint alters the mechanical and ultrastructural properties of the rabbit anterior cruciate ligament. J Orthop Res13:191–200

    Google Scholar 

  22. Noble BS, Peet N, Stevens HY, Brabbs A, Mosley JR, Reilly GC, Reeve J, Skerry TM, Lauyon LE (2003) Mechanical loading: biphasic osteocyte survival and targeting of osteoclasts for bone destruction in rat cortical bone. Am J Physiol Cell Physiol 284:C934–C943

    PubMed  CAS  Google Scholar 

  23. Noyes FR (1977) Functional properties of knee ligaments and alterations induced by immobilization: a correlative biomechanical and histological study in primates. Clin Orthop 123:210–242

    PubMed  Google Scholar 

  24. Noyes FR, DeLucas JL, Torvik PJ (1974) Biomechanics of anterior cruciate ligament failure: an analysis of strain-rate sensitivity and mechanisms of failure in primates. J Bone Joint Surg [Am] 56:236–253

    CAS  Google Scholar 

  25. Ochi M, Adachi N, Deie M, Kanaya A (2006) Anterior cruciate ligament augmentation procedure with a 1-incision technique: anteromedial bundle or posterolateral bundle reconstruction. Arthroscopy 22:463.e1–465

    Article  PubMed  Google Scholar 

  26. Sabatini M, Rolland G, Léonce S, Thomas M, Lesur C, Pérez V, de Nanteuil G, Bonnet J (2000) Effects of ceramide on apoptosis, proteoglycan degradation, and matrix metalloproteinase expression in rabbit articular cartilage. Biochem Biophys Res Commun 267:438–444

    Article  PubMed  CAS  Google Scholar 

  27. Soslowsky LJ, Thomopoulos S, Tun S, Flanagan CL, Keefer CC, Mastaw J, Carpenter JE (2000) Overuse activity injuries the supraspinatus tendon in an animal model: a histologic and biomechanical study. J Shoulder Elbow Surg 9:79–84

    Article  PubMed  CAS  Google Scholar 

  28. Spindler KP, Clark SW, Nanney LB, Davidson JM (1996) Expression of collagen and matrix metalloproteinases in ruptured human anterior cruciate ligament: an in situ hybridization study. J Orthop Res 14:857–861

    Article  PubMed  CAS  Google Scholar 

  29. Tuoheti Y, Itoi E, Pradhan RL, Wakabayashi I, Takahashi S, Minagawa H, Kobayashi M, Okada K, Shimada Y (2005) Apoptosis in the supraspinatus tendon with stage II subacromial impingement. J Shoulder Elbow Surg 14:535–541

    Article  PubMed  Google Scholar 

  30. Woo SLY, Gomez MA, Sites TJ, Newton PO, Orlando CA, Akeson WH (1987) The biomechanical and morphological changes in the medial collateral ligament of the rabbit after immobilization and remobilization. J Bone Joint Surg [Am] 69:1200–1211

    CAS  Google Scholar 

  31. Yuan J, Murrell GAC, Wei AQ, Wang MX (2002) Apoptosis in rotator cuff tendonopathy. J Ortop Res 20:1372–1379

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Akihiro Kanamori and Ms. Jennifer Kanamori for their suggestions. The authors thank the Core Research for Evolutional Science and Technology (CREST) Program, and the Leading Project (LP) of the Ministry of Education, Culture, Sports, Science and Technology of Japan for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masataka Sakane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mutsuzaki, H., Sakane, M., Ikeda, K. et al. Histological changes and apoptosis of cartilage layer in human anterior cruciate ligament tibial insertion after rupture. Knee Surg Sports Traumatol Arthrosc 15, 602–609 (2007). https://doi.org/10.1007/s00167-006-0264-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-006-0264-x

Keywords

Navigation