Advertisement

Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 14, Issue 12, pp 1252–1258 | Cite as

Natural history of bone bruises after acute knee injury: clinical outcome and histopathological findings

  • Atsuo Nakamae
  • Lars EngebretsenEmail author
  • Roald Bahr
  • Tron Krosshaug
  • Mitsuo Ochi
Knee

Abstract

The purpose of this paper is to review the scientific literature on the natural history of bone bruises and the experimental studies regarding the histopathological effects of impaction load on articular cartilage and subchondral bone. Bone bruises with subchondral or osteochondral injuries, or geographic bone bruises seemed to be persistent for years after trauma on MRI. Biopsy samples of the articular cartilage overlying the bone bruise lesions showed degeneration or necrosis of chondrocytes and loss of proteoglycan. Experimental studies using a single impact load revealed chondrocytes death, alteration of the mechanical properties of cartilage explants and/or an increase in the thickness of subchondral bone. These data are indicative of a significant injury to normal articular cartilage homeostasis, and support the suggestion that severe bone bruise is a precursor of early degenerative changes. We recommend delaying return to full weightbearing status when a severe bone bruise is detected to prevent further collapse of subchondral bone and further aggravation of articular cartilage injury.

Keywords

Bone bruise Knee Natural history Anterior cruciate ligament (ACL) Articular cartilage 

References

  1. 1.
    Amiel D, Coutts RD, Abel M, Stewart W, Harwood F, Akeson WH (1985) Rib perichondral grafts for the repair of full-thickness articular-cartilage defects. J Bone Joint Surg Am 67:911–920PubMedGoogle Scholar
  2. 2.
    Bert JM (1993) Role of abrasion arthroplasty and debridement in the management of arthritis of the knee. Rheum Dis Clin N Am 19:725–739Google Scholar
  3. 3.
    Bretlau T, Tuxoe J, Larsen L, Jorgensen U, Thomsen HS, Lausten GS (2002) Bone bruise in the acutely injured knee. Knee Surg Sports Traumatol Arthrosc 10:96–101PubMedCrossRefGoogle Scholar
  4. 4.
    Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331:889–895PubMedCrossRefGoogle Scholar
  5. 5.
    Buckwalter JA, Mankin HJ (1998) Articular cartilage. Tissue design and chondrocyte–matrix interactions. Instr Course Lect 47:477–486PubMedGoogle Scholar
  6. 6.
    Chen CT, Burton-Wurster N, Borden C, Hueffer K, Bloom SE, Lust G (2001) Chondrocyte necrosis and apoptosis in impact damaged articular cartilage. J Orthop Res 19:703–711PubMedCrossRefGoogle Scholar
  7. 7.
    Clark AG, Jordan JM, Vilim V, Renner JB, Dragomir AD, Luta G, Kraus VB (1999) Serum cartilage oligomeric matrix protein reflects osteoarthritis presence and severity. The Johnston County Osteoarthritis Project. Arthritis Rheum 42:2356–2364PubMedCrossRefGoogle Scholar
  8. 8.
    Costa-Paz M, Muscolo DL, Ayerza M, Makino A, Aponte-Tinao L (2001) Magnetic resonance imaging follow-up study of bone bruises associated with anterior cruciate ligament ruptures. Arthroscopy 17:445–449PubMedCrossRefGoogle Scholar
  9. 9.
    Daniel DM, Stone ML, Dobson BE, Fithian DC, Rossman DJ, Kaufman KR (1994) Fate of the ACL-injured patient. A prospective outcome study. Am J Sports Med 22:632–644PubMedGoogle Scholar
  10. 10.
    Davies NH, Niall D, King LJ, Lavelle J, Healy JC (2004) Magnetic resonance imaging of bone bruising in the acutely injured knee. Short-term outcome. Clin Radiol 59:439–445PubMedCrossRefGoogle Scholar
  11. 11.
    Engebretsen L, Arendt E, Fritts HM (1993) Osteochondral lesions and cruciate ligament injuries. MRI in 18 knees. Acta Orthop Scand 64:434–436PubMedGoogle Scholar
  12. 12.
    Escalas F, Curell R (1994) Occult posttraumatic bone injury. Knee Surg Sports Traumatol Arthrosc 2:147–149PubMedCrossRefGoogle Scholar
  13. 13.
    Ewers BJ, Dvoracek-Driksna D, Orth MW, Haut RC (2001) The extent of matrix damage and chondrocyte death in mechanically traumatized articular cartilage explants depends on rate of loading. J Orthop Res 19:779–784PubMedCrossRefGoogle Scholar
  14. 14.
    Faber KJ, Dill JR, Amendola A, Thain L, Spouge A, Fowler PJ (1999) Occult osteochondral lesions after anterior cruciate ligament rupture. Six-year magnetic resonance imaging follow-up study. Am J Sports Med 27:489–494PubMedGoogle Scholar
  15. 15.
    Fang C, Johnson D, Leslie MP, Carlson CS, Robbins M, Di Cesare PE (2001) Tissue distribution and measurement of cartilage oligomeric matrix protein in patients with magnetic resonance imaging-detected bone bruises after acute anterior cruciate ligament tears. J Orthop Res 19:634–641PubMedCrossRefGoogle Scholar
  16. 16.
    Fithian DC, Paxton EW, Stone ML, Luetzow WF, Csintalan RP, Phelan D, Daniel DM (2005) Prospective trial of a treatment algorithm for the management of the anterior cruciate ligament-injured knee. Am J Sports Med 33:335–346PubMedCrossRefGoogle Scholar
  17. 17.
    Gilmore RS, Palfrey AJ (1988) Chondrocyte distribution in the articular cartilage of human femoral condyles. J Anat 157:23–31PubMedGoogle Scholar
  18. 18.
    Graf BK, Cook DA, De Smet AA, Keene JS (1993) “Bone bruises” on magnetic resonance imaging evaluation of anterior cruciate ligament injuries. Am J Sports Med 21:220–223PubMedGoogle Scholar
  19. 19.
    Hedbom E, Antonsson P, Hjerpe A, Aeschlimann D, Paulsson M, Rosa-Pimentel E, Sommarin Y, Wendel M, Oldberg A, Heinegard D (1992) Cartilage matrix proteins. An acidic oligomeric protein (COMP) detected only in cartilage. J Biol Chem 25:6132–6136Google Scholar
  20. 20.
    Hoikka VEJ, Jaroma HJ, Ritsilä VA (1990) Reconstruction of the patellar articulation with periosteal grafts. Acta Orthop Scand 61:36–39PubMedGoogle Scholar
  21. 21.
    Hooiveld MJ, Roosendaal G, Jacobs KM, Vianen ME, van den Berg HM, Bijlsma JW, Lafeber FP (2004) Initiation of degenerative joint damage by experimental bleeding combined with loading of the joint. A possible mechanism of hemophilic arthropathy. Arthritis Rheum 50:2024–2031PubMedCrossRefGoogle Scholar
  22. 22.
    Huntley JS, Bush PG, McBirnie JM, Simpson AH, Hall AC (2005) Chondrocyte death associated with human femoral osteochondral harvest as performed for mosaicplasty. J Bone Joint Surg Am 87:351–360PubMedCrossRefGoogle Scholar
  23. 23.
    Hunziker EB (2002) Articular cartilage repair. Basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage 10:432–463PubMedCrossRefGoogle Scholar
  24. 24.
    Hunziker EB, Quinn TM (2003) Surgical removal of articular cartilage leads to loss of chondrocytes from cartilage bordering the wound edge. J Bone Joint Surg Am 85-A Suppl 2:85–92Google Scholar
  25. 25.
    Johnson DL, Bealle DP, Brand JC Jr, Nyland J, Caborn DN (2000) The effect of a geographic lateral bone bruise on knee inflammation after acute anterior cruciate ligament rupture. Am J Sports Med 28:152–155PubMedGoogle Scholar
  26. 26.
    Johnson DL, Urban WP Jr, Caborn DN, Vanarthos WJ, Carlson CS (1998) Articular cartilage changes seen with magnetic resonance imaging-detected bone bruises associated with acute anterior cruciate ligament rupture. Am J Sports Med 26:409–414PubMedGoogle Scholar
  27. 27.
    Johnson LL (1989) Arthroscopic abrasion arthroplasty historical and pathological perspective. Present status. Arthroscopy 2:54–69CrossRefGoogle Scholar
  28. 28.
    Kettner NW, Pierre-Jerome C (1992) Magnetic resonance imaging of the wrist. Occult osseous lesions. J Manipulative Physiol Ther 15:599–603PubMedGoogle Scholar
  29. 29.
    Krosshaug T, Andersen TE, Olsen OE, Myklebust G, Bahr R (2005) Research approaches to describe the mechanisms of injuries in sport. Limitations and possibilities. Br J Sports Med 39:330–339PubMedCrossRefGoogle Scholar
  30. 30.
    Kurz B, Jin M, Patwari P, Cheng DM, Lark MW, Grodzinsky AJ (2001) Biosynthetic response and mechanical properties of articular cartilage after injurious compression. J Orthop Res 19:1140–1146PubMedCrossRefGoogle Scholar
  31. 31.
    Lewis JL, Deloria LB, Oyen-Tiesma M, Thompson RC Jr, Ericson M, Oegema TR Jr (2003) Cell death after cartilage impact occurs around matrix cracks. J Orthop Res 21:881–887PubMedCrossRefGoogle Scholar
  32. 32.
    Lohmander LS, Ionescu M, Jugessur H, Poole AR (1999) Changes in joint cartilage aggrecan after knee injury and in osteoarthritis. Arthritis Rheum 42:534–544PubMedCrossRefGoogle Scholar
  33. 33.
    Lynch TC, Crues JV 3rd, Morgan FW, Sheehan WE, Harter LP, Ryu R (1989) Bone abnormalities of the knee. Prevalence and significance at MR imaging. Radiology 171:761–766PubMedGoogle Scholar
  34. 34.
    Mair SD, Schlegel TF, Gill TJ, Hawkins RJ, Steadman JR (2004) Incidence and location of bone bruises after acute posterior cruciate ligament injury. Am J Sports Med 32:1681–1687PubMedCrossRefGoogle Scholar
  35. 35.
    Matsusue Y, Yamamuro Y, Hama H (1993) Arthroscopic multiple osteochondral transplantation to the chondral defects in the knee associated with anterior cruciate ligament disruption. Arthroscopy 9:318–321PubMedCrossRefGoogle Scholar
  36. 36.
    Miller MD, Osborne JR, Gordon WT, Hinkin DT, Brinker MR (1998) The natural history of bone bruises. A prospective study of magnetic resonance imaging-detected trabecular microfractures in patients with isolated medial collateral ligament injuries. Am J Sports Med 26:15–19PubMedGoogle Scholar
  37. 37.
    Minas T, Nehrer S (1997) Current concepts in the treatment of articular cartilage defects. Orthopaedics 20:525–538Google Scholar
  38. 38.
    Mink JH, Deutsch AL (1989) Occult cartilage and bone injuries of the knee. Detection, classification, and assessment with MR imaging. Radiology 170:823–829PubMedGoogle Scholar
  39. 39.
    Myklebust G, Bahr R (2005) Return to play guidelines after anterior cruciate ligament surgery. Br J Sports Med 39:127–131PubMedCrossRefGoogle Scholar
  40. 40.
    Myklebust G, Holm I, Maehlum S, Engebretsen L, Bahr R (2003) Clinical, functional, and radiologic outcome in team handball players 6 to 11 years after anterior cruciate ligament injury. A follow-up study. Am J Sports Med 31:981–989PubMedGoogle Scholar
  41. 41.
    Newberry WN, Garcia JJ, Mackenzie CD, Decamp CE, Haut RC (1998) Analysis of acute mechanical insult in an animal model of post-traumatic osteoarthrosis. J Biomech Eng 120:704–709PubMedGoogle Scholar
  42. 42.
    Ochi M, Uchio Y, Kawasaki K, Wakitani S, Iwasa J (2002) Transplantation of cartilage-like tissue made by tissue engineering in the treatment of cartilage defects of the knee. J Bone Joint Surg Br 84:571–578PubMedCrossRefGoogle Scholar
  43. 43.
    Parkkinen JJ, Lammi MJ, Helminen HJ, Tammi M (1992) Local stimulation of proteoglycan synthesis in articular cartilage explants by dynamic compression in vitro. J Orthop Res 10:610–620PubMedCrossRefGoogle Scholar
  44. 44.
    Pinar H, Akseki D, Kovanlikaya I, Arac S, Bozkurt M (1997) Bone bruises detected by magnetic resonance imaging following lateral ankle sprains. Knee Surg Sports Traumatol Arthrosc 5:113–117PubMedCrossRefGoogle Scholar
  45. 45.
    Quinn TM, Grodzinsky AJ, Hunziker EB, Sandy JD (1998) Effects of injurious compression on matrix turnover around individual cells in calf articular cartilage explants. J Orthop Res 16:490–499PubMedCrossRefGoogle Scholar
  46. 46.
    Rangger C, Kathrein A, Freund MC, Klestil T, Kreczy A (1998) Bone bruise of the knee. Histology and cryosections in 5 cases. Acta Orthop Scand 69:291–294PubMedCrossRefGoogle Scholar
  47. 47.
    Repo RU, Finlay JB (1977) Survival of articular cartilage after controlled impact. J Bone Joint Surg Am 59:1068–1076PubMedGoogle Scholar
  48. 48.
    Roemer FW, Bohndorf K (2002) Long-term osseous sequelae after acute trauma of the knee joint evaluated by MRI. Skeletal Radiol 31:615–623PubMedCrossRefGoogle Scholar
  49. 49.
    Rosen MA, Jackson DW, Berger PE (1991) Occult osseous lesions documented by magnetic resonance imaging associated with anterior cruciate ligament ruptures. Arthroscopy 7:45–51PubMedCrossRefGoogle Scholar
  50. 50.
    Sah RL, Kim YJ, Doong JY, Grodzinsky AJ, Plaas AH, Sandy JD (1989) Biosynthetic response of cartilage explants to dynamic compression. J Orthop Res 7:619–636PubMedCrossRefGoogle Scholar
  51. 51.
    Speer KP, Spritzer CE, Bassett FH III, Feagin JA Jr, Garrett WE Jr (1992) Osseous injury associated with acute tears of the anterior cruciate ligament. Am J Sports Med 20:382–389PubMedGoogle Scholar
  52. 52.
    Speer KP, Warren RF, Wickiewicz TL, Horowitz L, Henderson L (1995) Observations on the injury mechanism of anterior cruciate ligament tears in skiers. Am J Sports Med 23:77–81PubMedGoogle Scholar
  53. 53.
    Thompson RC Jr, Oegema TR Jr, Lewis JL, Wallace L (1991) Osteoarthrotic changes after acute transarticular load. An animal model. J Bone Joint Surg Am 73:990–1001PubMedGoogle Scholar
  54. 54.
    Thompson RC Jr, Vener MJ, Griffiths HJ, Lewis JL, Oegema TR Jr, Wallace L (1993) Scanning electron-microscopic and magnetic resonance-imaging studies of injuries to the patellofemoral joint after acute transarticular loading. J Bone Joint Surg Am 75:704–713PubMedGoogle Scholar
  55. 55.
    Torzilli PA, Grigiene R, Borrelli J Jr, Helfet DL (1999) Effect of impact load on articular cartilage. Cell metabolism and viability, and matrix water content. J Biomech Eng 121:433–441PubMedGoogle Scholar
  56. 56.
    Vellet AD, Marks PH, Fowler PJ, Munro TG (1991) Occult posttraumatic osteochondral lesions of the knee. Prevalence, classification, and short term sequelae evaluated with MR imaging. Radiology 178:271–276PubMedGoogle Scholar
  57. 57.
    Wright RW, Phaneuf MA, Limbird TJ, Spindler KP (2000) Clinical outcome of isolated subcortical trabecular fractures (bone bruise) detected on magnetic resonance imaging in knees. Am J Sports Med 28:663–667PubMedGoogle Scholar
  58. 58.
    Yao L, Lee JK (1988) Occult intraosseous fracture. Detection with MR imaging. Radiology 167:749–751PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Atsuo Nakamae
    • 1
    • 3
  • Lars Engebretsen
    • 2
    Email author
  • Roald Bahr
    • 1
  • Tron Krosshaug
    • 1
  • Mitsuo Ochi
    • 3
  1. 1.Oslo Sports Trauma Research CenterNorwegian School of Sport SciencesOsloNorway
  2. 2.Orthopaedic CenterUllevaal University HospitalOsloNorway
  3. 3.Department of Orthopaedic Surgery, Graduate School of Biomedical ScienceHiroshima UniversityHiroshimaJapan

Personalised recommendations