Skip to main content

Advertisement

Log in

Corticomotor excitability associated with unilateral knee dysfunction secondary to anterior cruciate ligament injury

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

In the present report, we investigated changes in corticomotor excitability associated with unilateral knee dysfunction secondary to anterior cruciate ligament (ACL) injury. Ten participants, each with a previous history of unilateral ACL injury (median time post-injury 22 months) and eight healthy controls underwent transcranial magnetic stimulation (TMS) to assess excitability of the lower limb motor representation. Resting motor thresholds (RMTs) and stimulus response curves were measured at rest, while amplitude of motor evoked potentials and silent period duration were measured during active contraction. Correlations between these indices of excitability and three clinical measures of knee function were identified. Paired comparisons of indices by hemisphere revealed an asymmetry only in RMTs, which were significantly reduced on the side of injury in the ACL group. Correlations with clinical measures showed that the extent of quadriceps motor representation, as reflected by the steepness of SR curves, was strongly associated with quadriceps strength (r 2=0.71) on the injured side. The RMT asymmetry reported here in the context of ACL injury is consistent with other recent reports describing enhanced excitability of corticomotor projections targeting muscles adjacent to an immobilized or a painful joint. In such conditions, alterations in the quantity and quality of sensory feedback from the affected limb may underlie the rise in cortical excitability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abbruzzese G, Trompetto C (2002) Clinical and research methods for evaluating cortical excitability. J Clin Neurophysiol 19:307–321

    Article  PubMed  Google Scholar 

  2. Arnold JA, Coker TP, Heaton LM, Park JP, Harris WD (1979) Natural history of anterior cruciate tears. Am J Sports Med 7:305–313

    Article  PubMed  CAS  Google Scholar 

  3. Beard DJ, Kyberd PJ, Fergusson CM, Dodd CA (1993) Proprioception after rupture of the anterior cruciate ligament. An objective indication of the need for surgery? J Bone Joint Surg Br 75:311–315

    PubMed  CAS  Google Scholar 

  4. Boroojerdi B, Battaglia F, Muellbacher W, Cohen LG (2001) Mechanisms influencing stimulus-response properties of the human corticospinal system. Clin Neurophysiol 112:931–937

    Article  PubMed  CAS  Google Scholar 

  5. Capaday C, Lavoie BA, Barbeau H, Schneider C, Bonnard M (1999) Studies of the corticospinal control of human walking: I. responses to focal transcranial mangetic stimulation of the motor cortex. J Neurophysiol 81:129–139

    PubMed  CAS  Google Scholar 

  6. Chen R (2000) Studies of human motor physiology with transcranial magnetic stimulation. Muscle Nerve Suppl 9:S26–S32

    Article  PubMed  CAS  Google Scholar 

  7. Chen R, Corwell B, Yaseen Z, Hallett M, Cohen LG (1998) Mechanisms of cortical reorganization in lower-limb amputees. J Neurosci 18:3443–3450

    PubMed  CAS  Google Scholar 

  8. Chen R, Lozano AM, Ashby P (1999) Mechanism of the silent period following transcranial magnetic stimulation. Evidence from epidural recordings. Exp Brain Res 128:539–542

    Article  PubMed  CAS  Google Scholar 

  9. Chen R, Cohen LG, Hallett M (2002) Nervous system reorganization following injury. Neuroscience 111:761–773

    Article  PubMed  CAS  Google Scholar 

  10. Chmielewski TL, Stackhouse S, Axe MJ, Snyder-Mackler L (2004) A prospective analysis of incidence and severity of quadriceps inhibition in a consecutive sample of 100 patients with complete acute anterior cruciate ligament rupture. J Orthop Res 22:925–930

    Article  PubMed  Google Scholar 

  11. Civardi C, Boccagni C, Vicentini R, Bolamperti L, Tarletti R, Varrasi C, Monaco F, Cantello R (2001) Cortical excitability and sleep deprivation: a transcranial magnetic stimulation study. J Neurol Neurosurg Psychiatr 71:809–812

    Article  PubMed  CAS  Google Scholar 

  12. Cole KJ, Daley BJ, Brand RA (1996) The sensitivity of joint afferents to knee translation. Sportverletz Sportschaden 10:27–31

    PubMed  CAS  Google Scholar 

  13. Devanne H, Lavoie BA, Capaday C (1997) Input–output properties and gain changes in the human corticospinal pathway. Exp Brain Res 114:329–338

    Article  PubMed  CAS  Google Scholar 

  14. Drew T (1988) Motor cortical cell discharge during voluntary gait modification. Brain Res 457:181–187

    Article  PubMed  CAS  Google Scholar 

  15. Elmqvist LG, Lorentzon R, Johansson C, Fugl-Meyer AR (1988) Does a torn anterior cruciate ligament lead to change in the central nervous drive of the knee extensors? Eur J Appl Physiol Occup Physiol 58:203–207

    Article  PubMed  CAS  Google Scholar 

  16. Ferrell WR (1980) The adequacy of stretch receptors in the cat knee joint for signalling joint angle throughout a full range of movement. J Physiol 299:85–99

    PubMed  CAS  Google Scholar 

  17. Friden T, Roberts D, Zatterstrom R, Lindstrand A, Moritz U (1999) Proprioceptive defects after an anterior cruciate ligament rupture—the relation to associated anatomical lesions and subjective knee function. Knee Surg Sports Traumatol Arthrosc 7:226–231

    Article  PubMed  CAS  Google Scholar 

  18. Garland SJ, Gerilovsky L, Enoka RM (1994) Association between muscle architecture and quadriceps femoris H-reflex. Muscle Nerve 17:581–592

    Article  PubMed  CAS  Google Scholar 

  19. Gauffin H, Pettersson G, Tegner Y, Tropp H (1990) Function testing in patients with old rupture of the anterior cruciate ligament. Int J Sports Med 11:73–77

    Article  PubMed  CAS  Google Scholar 

  20. Guiheneuc P, Ginet J (1974) Study of the Hoffman Reflex obtained at the level of the quadriceps muscle of normal human subjects. Electroencephalogr Clin Neurophysiol 36:225–231

    Article  PubMed  CAS  Google Scholar 

  21. Heroux ME, Tremblay F (2005) Weight discrimination after anterior cruciate ligament injury: a pilot study. Arch Phys Med Rehabil 86:1362–1368

    Article  PubMed  Google Scholar 

  22. Hess CW, Mills KR, Murray NMF (1986) Magnetic stimulation of the human brain: facilitation of motor responses by voluntary contraction of ipsilateral and contralateral muscles with additional observations in an amputee. Neurosci Lett 71:235–240

    Article  PubMed  CAS  Google Scholar 

  23. Hogervorst T, Brand RA (1998) Mechanoreceptors in joint function. J Bone Joint Surg Am 80:1365–1378

    PubMed  CAS  Google Scholar 

  24. Hopkins JT, Ingersoll CD (2000) Arthrogenic muscle inhibition: a limiting factor in joint rehabilitation. J Sport Rehabil 9:135–159

    Google Scholar 

  25. Houk JC, Yack HJ (2003) Associations of knee angles, moments and function among subjects that are healthy and anterior cruciate ligament deficient (Acld) during straight ahead and crossover cutting activities. Gait Posture 18:126–138

    Article  Google Scholar 

  26. Irrgang JJ, Snyder-Mackler L, Wainner RS, Fu FH, Harner CD (1998) Development of a patient-reported measure of function of the knee. J Bone Joint Surg 80:1132–1145

    PubMed  CAS  Google Scholar 

  27. Kukowski B, Haug B (1992) Quantitative evaluation of the silent period, evoked by trancranial magnetic stimulation during sustained muscle contraction, in normal man and in patients with stroke. Electroencephalogr Clin Neurophysiol 32:373–378

    CAS  Google Scholar 

  28. Liepert J, Tegenthoff M, Malin JP (1995) Changes of cortical motor area size during immobilization. Electroencephalogr Clin Neurophysiol 97:382–386

    Article  PubMed  CAS  Google Scholar 

  29. Mills KR, Nithi KA (1997) Corticomotor threshold to magnetic stimulation: normal values and repeatability. Muscle Nerve 20:570–576

    Article  PubMed  CAS  Google Scholar 

  30. Mrachacz-Kersting N, Sinkjaer T (2003) Reflex and non-reflex torque responses to stretch of the human knee extensors. Exp Brain Res 151:72–81

    Article  PubMed  CAS  Google Scholar 

  31. Nakashima K, Wang Y, Shimoda M, Sakuma K, Takahashi K (1995) Shortened silent period produced by magnetic cortical stimulation in patients with Parkinson’s disease. J Neurol Sci 130(2):209–214

    Article  PubMed  CAS  Google Scholar 

  32. On AY, Uludag B, Taskiran E, Ertekin C (2004) Differential corticomotor control of a muscle adjacent to a painful joint. Neurorehabil Neural Repair 18:127–133

    Article  PubMed  Google Scholar 

  33. Palmieri RM, Tom JA, Edwards JE, Weltman A, Saliba EN, Mistry DJ, Ingersoll CD (2004) Arthrogenic muscle response induced by an experimental knee joint effusion is mediated by pre- and post-synaptic spinal mechanisms. J Electromyogr Kinesiol 14:631–640

    Article  PubMed  Google Scholar 

  34. Perreti A, Grossi D, Fragassi N, Lanzillo B, Nolano M, Pisacreta AI (1996) Evaluation of the motor cortex by magnetic stimulation in patients with Alzheimer disease. J Neurol Sci 135(1):31–37

    Article  Google Scholar 

  35. Proiori A, Berardelli A, Inghilleri M, Polidori L, Manfredi M (1994) Electromyographic silent period after transcranial brain stimulation in Huntington’s disease. Mov Disord 9:178–182

    Article  Google Scholar 

  36. Ray J, McNamara B, Boniface S (2002) Acquisition and expression of proximal and distal upperlimb stimulus-reponse curves to transcranial magnetic stimulation. Muscle Nerve 25:202–206

    Article  PubMed  Google Scholar 

  37. Ridding MC, Rothwell JC (1997) Stimulus/response curves as a method of measuring motor cortical excitability in man. Electroencephalogr Clin Neurophysiol 105:340–344

    Article  PubMed  CAS  Google Scholar 

  38. Risberg MA, Beynnon BD, Peura GD, Uh BS (1999) Proprioception after anterior cruciate ligament reconstruction with and without bracing. Knee Surg Sports Traumatol Arthrosc 7:303–309

    Article  PubMed  CAS  Google Scholar 

  39. Rudolph KS, Axe MJ, Buchanan TS, Scholz JP, Snyder-Mackler L (2001) Dynamic stability in the anterior cruciate ligament deficient knee. Knee Surg Sports Traumatol Arthrosc 9:62–71

    Article  PubMed  CAS  Google Scholar 

  40. Siebner HR, Rothwell J (2003) Transcranial magnetic stimulation: new insights into representational cortical plasticity. Exp Brain Res 148:1–16

    Article  PubMed  Google Scholar 

  41. Snyder-Mackler L, Delitto A, Bailey SL, Stralka SW (1995) Strength of the quadriceps femoris muscle and functional recovery after reconstruction of the anterior cruciate ligament. J Bone Joint Surg Am 77A:1166–1173

    Google Scholar 

  42. Urbach D, Nebelung W, Weiler H, Awiszus F (1991) Bilateral deficit of voluntary quadriceps muscle activation after unilateral Acl tear. Med Sci Sports Exerc 31:1691–1696

    Google Scholar 

  43. Wassermann EM (2002) Variation in the response to transcranial magnetic brain stimulation in the general population. Clin Neurophysiol 113:1165–1171

    Article  PubMed  Google Scholar 

  44. Wojtys EM, Huston LJ (2000) Longitudinal effects of anterior cruciate ligament injury and patellar tendon autograft reconstruction on neuromuscular performance. Am J Sports Med 28:336–344

    PubMed  CAS  Google Scholar 

  45. Wojtys EM, Huston LJ (1994) Neuromuscular performance in normal and anterior cruciate ligament-deficient lower extremities. Am J Sports Med 22:89–104

    Article  PubMed  CAS  Google Scholar 

  46. Young A (1993) Current issues in arthrogenous inhibition. Ann Rheum Dis 52:829–834

    Article  PubMed  CAS  Google Scholar 

  47. Young A, Stokes M (1986) Reflex inhibition of muscle activity and the morphological consequences of inactivity. In: Saltin B (ed) Biochemistry of exercise VI, Human Kinetics Publishers, Champaign, pp 531–544

    Google Scholar 

  48. Zanette G, Tinazzi M, Bonato C, di Summa A, Manganotti P, Polo A, Fiaschi A (1997) Reversible changes of motor cortical outputs following immobilization of the upper limb. Electroencephalogr Clin Neurophysiol 105:269–279

    Article  PubMed  CAS  Google Scholar 

  49. Zanette G, Manganotti P, Fiaschi A, Tamburin S (2004) Modulation of motor cortex excitability after upper limb immobilization. Clin Neurophysiol 115:1264–1275

    Article  PubMed  Google Scholar 

  50. Zang L, Shiavi RG, Limbird TJ, Minorik JM (2003) Six degrees-of-freedom kinematics of Acl deficient knees during locomiotion—compensatory mechanism. Gait Posture 17:34–42

    Article  Google Scholar 

  51. Zimny ML (1988) Mechanoreceptors in articular tissues. Am J Anat 182:16–32

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Part of this work served as a partial fulfillment for a Master degree in Human Kinetics by M. E. Héroux. M.E. Héroux received a Graduate Scholarship from the Ministry of Colleges and Universities of Ontario during the completion of this study. François Tremblay is supported by Natural Science and Engineering Research Council of Canada. The authors wish to thank Lisa Francis for her help in revising the manuscript for English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Tremblay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Héroux, M.E., Tremblay, F. Corticomotor excitability associated with unilateral knee dysfunction secondary to anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthr 14, 823–833 (2006). https://doi.org/10.1007/s00167-006-0063-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-006-0063-4

Keywords

Navigation