Skip to main content
Log in

Objective patellar instability: MR-based quantitative assessment of potentially associated anatomical features

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

To evaluate and compare the diagnostic utility of multiple quantitative parameters as measured on knee magnetic resonance (MR) examinations of patients suffering objective patellar instability (OPI). We performed a retrospective evaluation of knee MR examinations in a group of 46 patients (59 knees) with clinically proven OPI, and in a control group of 69 patients (71 knees). Multiple quantitative parameters in both groups were statistically evaluated and compared for their association with OPI. OPI patients tend to present shallower trochlear groove (<5 mm), larger Insall-Salvati index (>1.2), shorter patellar nose (<9 mm), smaller morphology ratio (<1.2), and larger patellar tilt (>11°) than control patients. The best sensitivities were those of the lateral patellar tilt (92.7%), the trochlear groove depth at the roman arch level (85.7%) and the Insall-Salvati index (78%). The best specificities were those of the morphology ratio (86.9%), the patellar nose (84.5%) and the patellar tendon length (84.5%). Shallow trochlear groove may be confidently identified at the roman arch view in OPI patients. Patella alta may be more reliably detected by the Insall-Salvati index in OPI patients. Patellar nose and morphology ratio are very specific indicators of OPI. A short patellar nose (that is to say, a patellar nose ratio of <0.25) has a high association with OPI. Lateral patellar tilt remains the single feature with the highest sensitivity and specificity for identifying OPI patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Albee FH (1915) The bone graft wedge in the treatment of habitual dislocation of the patella. Med Rec 88:257–258

    Google Scholar 

  2. Carrillon Y, Abidi H, Dejour D, Fantino O, Moyen B, Tran-Minh VA (2000) Patellar instability: assessment on MR images by measuring the lateral trochlear inclination–initial experience. Radiology 216:582–585

    PubMed  Google Scholar 

  3. Caton J (1989) Method of measuring the height of the patella. Acta Orthop Belg 55:385–386

    PubMed  Google Scholar 

  4. Davies AP, Costa ML, Shepstone L, Glasgow MM, Donnell S, Donnell ST (2000). The sulcus angle and malalignment of the extensor mechanism of the knee. J Bone Joint Surg Br 82:1162–1166

    Article  PubMed  Google Scholar 

  5. Dejour H, Walch G, Neyret P, Adeleine P (1990) Dysplasia of the femoral trochlea. Rev Chir Orthop Reparatrice Appar Mot 76:45–54

    PubMed  Google Scholar 

  6. Dejour H, Walch G, Nove-Josserand L, Guier C (1994) Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc 2:19–26

    Article  PubMed  Google Scholar 

  7. Elias DA, White LM, Fithian DC (2002) Acute lateral patellar dislocation at MR imaging: injury patterns of medial patellar soft-tissue restraints and osteochondral injuries of the inferomedial patella. Radiology 225:736–743

    PubMed  Google Scholar 

  8. Fulkerson JP, Schutzer SF, Ramsby GR, Bernstein RA (1987) Computerized tomography of the patellofemoral joint before and after lateral release or realignment. Arthroscopy 3:19–24

    PubMed  Google Scholar 

  9. Goutallier D, Bernageau J, Lecudonnec B (1978) The meaurement of the tibial tuberosity. Patella groove distanced tecnique and results (author’s transl). Rev Chir Orthop Reparatrice Appar Mot 64:423–428

    PubMed  Google Scholar 

  10. Grelsamer RP, Proctor CS, Bazos AN (1994). Evaluation of patellar shape in the sagittal plane. A clinical analysis. Am J Sports Med 22:61–66

    PubMed  Google Scholar 

  11. Inoue M, Shino K, Hirose H, Horibe S, Ono K (1988) Subluxation of the patella. Computed tomography analysis of the patellofemoral congruence. J Bone Joint Surg Am 70:1331–1337

    PubMed  Google Scholar 

  12. Insall J, Goldberg V, Salvati E (1972) Recurrent dislocation and the high-riding patella. Clin Orthop 88:67–69

    PubMed  Google Scholar 

  13. Insall J, Salvati E (1971) Patella position in the normal knee joint. Radiology 101:101–104

    PubMed  Google Scholar 

  14. Kirsch MD, Fitzgerald SW, Friedman H, Rogers LF (1993) Transient lateral patellar dislocation: diagnosis with MR imaging. AJR Am J Roentgenol 161:109–113

    PubMed  Google Scholar 

  15. Koskinen SK, Taimela S, Nelimarkka O, Komu M, Kujala UM (1993) Magnetic resonance imaging of patellofemoral relationships. Skeletal Radiol 22:403–410

    Google Scholar 

  16. Kujala UM, Osterman K, Kormano M, Komu M, Schlenzka D (1989) Patellar motion analyzed by magnetic resonance imaging. Acta Orthop Scand 60:13–16

    PubMed  Google Scholar 

  17. Lance E, Deutsch AL, Mink JH (1993) Prior lateral patellar dislocation: MR imaging findings. Radiology 189:905–907

    PubMed  Google Scholar 

  18. Laurin CA, Levesque HP, Dussault R, Labelle H, Peides JP (1978) The abnormal lateral patellofemoral angle: a diagnostic roentgenographic sign of recurrent patellar subluxation. J Bone Joint Surg Am 60:55–60

    PubMed  Google Scholar 

  19. Malghem J, Maldague B (1989) Depth insufficiency of the proximal trochlear groove on lateral radiographs of the knee: relation to patellar dislocation. Radiology 170:507–510

    PubMed  Google Scholar 

  20. Masse Y (1978) Trochleplasty. Restorations of the intercondylar groove in subluxations and dislocations of the patella. Rev Chir Orthop Reparatrice Appar Mot 64:3–17

    PubMed  Google Scholar 

  21. McNally EG (2001) Imaging assessment of anterior knee pain and patellar maltracking. Skeletal Radiol 30:484–495

    Google Scholar 

  22. McNally EG, Ostlere SJ, Pal C, Phillips A, Reid H, Dodd C (2000) Assessment of patellar maltracking using combined static and dynamic MRI. Eur Radiol 10:1051–1055

    Article  PubMed  Google Scholar 

  23. Merchant AC, Mercer RL (1974) Lateral release of the patella. A preliminary report. Clin Orthop 103:40–45

    PubMed  Google Scholar 

  24. Miller TT, Staron RB, Feldman F (1996) Patellar height on sagittal MR imaging of the knee. AJR Am J Roentgenol 167:339–341

    PubMed  Google Scholar 

  25. Muhle C, Brossmann J, Helle M (1999) Kinematic CT and MR imaging of the patellofemoral joint. Eur Radiol 9:508–518

    Article  PubMed  Google Scholar 

  26. Neyret P, Robinson AH, Le Coultre B, Lapra C, Chambat P (2002) Patellar tendon length–the factor in patellar instability? Knee 9:3–6

    Article  PubMed  Google Scholar 

  27. Nove-Josserand L, Dejour D (1995) Quadriceps dysplasia and patellar tilt in objective patellar instability. Rev Chir Orthop Reparatrice Appar Mot 81:497–504

    PubMed  Google Scholar 

  28. Pfirrmann CW, Zanetti M, Romero J, Hodler J (2000) Femoral trochlear dysplasia: MR findings. Radiology 216:858–864

    PubMed  Google Scholar 

  29. Powers CM, Shellock FG, Pfaff M (1998) Quantification of patellar tracking using kinematic MRI. J Magn Reson Imaging 8:724–732

    PubMed  Google Scholar 

  30. Quinn SF, Brown TR, Demlow TA (1993) MR imaging of patellar retinacular ligament injuries. J Magn Reson Imaging 3:843–847

    PubMed  Google Scholar 

  31. Schutzer SF, Ramsby GR, Fulkerson JP (1986) Computed tomographic classification of patellofemoral pain patients. Orthop Clin North Am 17:235–248

    PubMed  Google Scholar 

  32. Spritzer CE (2000) “Slip sliding Away”: patellofemoral dislocation and tracking. Magn Reson Imaging Clin N Am 8:299–320

    PubMed  Google Scholar 

  33. Stäubli HU, Bosshard C, Porcellini B, Rauschning W (2002) Magnetic resonance imaging for articular cartilage: cartilage-bone mismatch. Clin Sports Med 21(3): 417–433

    Article  PubMed  Google Scholar 

  34. Stäubli HU, Durrenmatt U, Porcellini B, Rauschning W (1999) Anatomy and surface geometry of the patellofemoral joint in the axial plane. J Bone Joint Surg Br 81:452–458

    Article  PubMed  Google Scholar 

  35. Ward SR, Shellock FG, Terk MR, Salsich GB, Powers CM (2002) Assessment of patellofemoral relationships using kinematic MRI: comparison between qualitative and quantitative methods. J Magn Reson Imaging 16:69–74

    Article  PubMed  Google Scholar 

  36. Wiberg G (1941) Roentgenographic and anatomic studies of the femoropatellar joint, with special reference to chondromalacia patellae. Acta Orthop Scand 12:319–410

    Google Scholar 

Download references

Acknowledgements

We wish to express our gratitude to C. Lapra and T. Tavernier for providing us with the MR imaging studies of the OPI patients. We also wish to express our gratitude to J. Bates and the Language Service of the Rovira i Virgili University for their assistance in preparing the manuscript. The authors’ contributed to this study as follows: guarantors of integrity of the entire study: JSE, JMM, JG, PN; study concepts and design: JSE, JG, PN; definition of intellectual content: JSE, JG, PN; literature research: JSE, JMM; clinical studies: PN; data acquisition: JSE; data analysis: JSE, JMM, MO; statistical analysis: MO; manuscript preparation and editing: JSE, JMM; and manuscript review: JSE, JMM, JG, PN, AS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan S. Escala.

Additional information

The investigation was performed at: Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain, and Hôpital de la Croix-Rousse, Centre Livet, Caluire, France

Rights and permissions

Reprints and permissions

About this article

Cite this article

Escala, J.S., Mellado, J.M., Olona, M. et al. Objective patellar instability: MR-based quantitative assessment of potentially associated anatomical features. Knee Surg Sports Traumatol Arthrosc 14, 264–272 (2006). https://doi.org/10.1007/s00167-005-0668-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-005-0668-z

Keywords

Navigation