Skip to main content

Advertisement

Log in

The relationship between isokinetic quadriceps strength and laxity on gait analysis parameters in anterior cruciate ligament reconstructed knees

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Gait alterations after ACL reconstruction have been reported in the literature. The current study examined a group of 14 patients who all had an ACL reconstruction with a patellar tendon autograft. Kinetic and kinematic data were obtained from the knee during walking. The flexion-extension deficit (FED) calculated from the angular difference between maximal flexion and maximal extension during the stance phase in the ACL-reconstructed and the normal knee was measured. We investigated whether these alterations in gait are related to quadriceps strength and residual laxity of the knee. It may be that patients modify their gait patterns to protect the knee from excessive anterior translation of the tibia by reducing the amount of extension during stance. On the other hand, persistent quadriceps weakness may also cause changes in gait patterns as the quadriceps is functioning as an important dynamic stabilizer of the knee during stance. Results showed that patients had a significantly higher FED value (4.9±4.0) than a healthy control group in a previous study (1.3±0.9). This is caused mainly by an extension deficit during midstance. External extension moments of the knee (TZMAX were significantly lower in the current patients group than in a healthy control group (TZMAX −0.27±0.19 Nm/kg in patients vs. −0.08±0.06 Nm/kg in controls). There were no significant correlations between quadriceps strength and gait analysis parameters. Furthermore no correlation was found between the amount of laxity of the knee and gait. The relevance of this study lies in the fact that apparently the measured gait alterations cannot be explained solely by often used biomechanical indicators such as laxity and strength. The measured gait alterations may be a result of the surgical procedure with subsequent modified motor programming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Anderson MA, Gieck JH, Perrin D, Weltman A, Rutt R, Denegar C (1991) The relationships among isometric, isotonic and isokinetic concentric and eccentric quadriceps and hamstrings force and three components of athletic performance. J Orthop Sports Phys Ther 14:114–120

    Google Scholar 

  2. Andriacchi TP, Birac D (1993) Functional testing in the anterior cruciate ligament-deficient knee. Clin Orthop 288:40–47

    PubMed  Google Scholar 

  3. Bach BR, Jones GT Hager CA (1995) Arthrometric results of arthroscopically assisted anterior cruciate ligament reconstruction using autograft patellar tendon substitution. Am J Sports Med 23:179–185

    PubMed  Google Scholar 

  4. Barber SD, Noyes FR, Mangine RE, McCloskey JW, Hartman W (1990) Quantitative assessment of functional limitations in normal and anterior cruciate ligament deficient knees. Clin Orthop 255:204–214

    PubMed  Google Scholar 

  5. Beard D, Soundarapandian R, O’Connor J, Dodd C (1996) Gait and electromyographic analysis of anterior cruciate ligament deficient subjects. Gait Posture 4:83–88

    Article  Google Scholar 

  6. Berchuk M, Andriacchi TP, Bach BR, Reider B (1990) Gait adaptions by patients who have a deficient anterior cruciate ligament. J Bone Joint Surg Am 72:871–877

    CAS  PubMed  Google Scholar 

  7. Carter TR, Edinger S (1999) Isokinetic evaluation of anterior cruciate ligament reconstruction: hamstring versus patellar tendon. Arthroscopy 15:169–172

    CAS  PubMed  Google Scholar 

  8. Ciccotti M, Kerlan R, Perry J, Pink M (1994) An electromyographic analysis of the knee during functional activities. II. The anterior cruciate ligament-deficient and reconstructed profiles. Am J Sports Med 22:651–658

    PubMed  Google Scholar 

  9. Daniel DM, Stone ML, Sachs R, Malcolm L (1985) Instrumented measurement of anterior knee laxity in patients with acute anterior cruciate ligament disruption. Am J Sports Med 13:401–407

    CAS  PubMed  Google Scholar 

  10. Delitto A, Irrgang JJ, Harner CD, Fu FH (1993) Relationship of isokinetic peak torque and work to one legged hop and vertical jump in ACL reconstructed knees. Phys Ther 73:85

    Google Scholar 

  11. Engelhardt M, Reuter I, Freiwald J (2001) Alterations of the neuromuscular system after knee surgery. Eur J Sports Traum Rel Res 23:75–81

    Google Scholar 

  12. Ferber R, Osternig LR, Woollacott MH, Wasielewski NJ, Lee JH (2002) Gait mechanics in chronic ACL deficiency and subsequent repair. Clin Biomech 17:274–285

    Article  Google Scholar 

  13. Freiwald J, Jager A, Starker M (1993) EMG-assisted functional analysis within the scope of follow-up of arthroscopically managed injuries of the anterior cruciate ligament. Sportverletz Sportschaden 7:122–128

    CAS  PubMed  Google Scholar 

  14. Freiwald J, Reuter I, Engelhardt M (1999) Neuromuscular and motor system alterations after knee trauma and knee surgery. A new paradigm. In: Lehmann (ed) Overload, performance incompetence and regeneration in sport. Kluwer, New York, pp 81–100

  15. Freiwald J, Engelhardt M (2002) Status of motor learning and coordination in orthopedic rehabilitation. Sportorthop Sporttraum 18:5–11

    Google Scholar 

  16. Karlsson J, Lundin O, Lossing IW, Peterson L (1991) Partial rupture of the patellar ligament. Results after operative treatment. Am J Sports Med 19:403–408

    PubMed  Google Scholar 

  17. Keays SL, Bullock-Saxton J, Keays AC (2000) Strength and function before and after anterior cruciate ligament reconstruction. Clin Orthop 373:174–183

    PubMed  Google Scholar 

  18. Kovaleski JE, Heitman RJ, Andres DPS, Gurchiek LR, Pearsall AW IV (2001) Relationship between closed-linear-kinetic and open-kinetic-chain isokinetic strength and lower functional performance. J Sport Rehabil 10:196–204

    Google Scholar 

  19. Lewek M, Rudolph K, Axe M, Snyder-Mackler L (2002) The effect of insufficient quadriceps strength on gait after anterior cruciate ligament reconstruction. Clin Biomech 17:56–63

    Article  Google Scholar 

  20. Liu W, Maitland ME (2000) The effect of hamstring muscle compensation for anterior laxity in the ACL-deficient knee during gait. J Biomech 33:871–879

    Article  CAS  PubMed  Google Scholar 

  21. Mittlmeier T, Weiler A, Sohn T, Kleinhans L, Mollbach S, Duda G, Sudkamp NP (1999) Functional monitoring during rehabilitation following anterior cruciate ligament reconstruction. Clin Biomech 14:576–584

    Article  CAS  Google Scholar 

  22. Natri A, Jarvinen M, Latvala K, Kannus P (1996) Isokinetic muscle performance after anterior cruciate ligament surgery. Long-term results and outcome predicting factors after primary surgery and late-phase reconstruction. Int J Sports Med 17:223–228

    CAS  PubMed  Google Scholar 

  23. Noyes FR, Barber SD, Mangine RE (1991) Abnormal lower limb symmetry determined by function hop test after anterior cruciate ligament rupture. Am J Sports Med 19:513–518

    CAS  PubMed  Google Scholar 

  24. Roberts CS, Rash GS, HonakerJT, WachowiakMP, Shaw JC (1999) A deficient anterior cruciate ligament does not lead to quadriceps avoidance gait. Gait Posture 10:189–199

    Article  CAS  PubMed  Google Scholar 

  25. Rudolph KS, Eastlack ME, Axe MJ, Snyder-Mackler L (1998) Movement patterns after anterior cruciate ligament injury: a comparison of patients who compensate well for the injury and those who require operative stabilization. J Electromyogr Kinesiol 8:349–362

    PubMed  Google Scholar 

  26. Schmalz T, Blumentritt S, Wagner R, Gokeler A (1998) Gait analysis of patients within one year after anterior cruciate ligament reconstruction. Phys Med Rehabil Kurortmed 8:1–8

    Google Scholar 

  27. Schmalz T, Blumentritt S, Wagner R, Junge R (1998) Evaluation with biomechanical gait analysis of various treatment methods after rupture of the anterior cruciate ligament. Sportverletz Sportschaden 12:131–137

    CAS  PubMed  Google Scholar 

  28. Schmalz T, Freiwald J, Greiwing A, Köcher L, Ludwig H, Blumentritt S (2001) Mechanical and electromyographical gait parameters in the course of rehabilitation afetr anterior cruciate ligament reconstruction. Eur J Sports Traum Rel Res 23:146–151

    Google Scholar 

  29. Sekiya I, Muneta T, Ogiuchi T, Yagishita K, Yamamoto H (1998) Significance of the single-legged hop test to the anterior cruciate ligament-reconstructed knee in relation to muscle strength and anterior laxity. Am J Sports Med 26:384–388

    CAS  PubMed  Google Scholar 

  30. Shelbourne KD, Nitz P (1990) Accelerated rehabilitation after anterior cruciate ligament reconstruction. Am J Sports Med 18:292–299

    CAS  PubMed  Google Scholar 

  31. Shelbourne KD, Foulk DA (1995) Timing of surgery in acute anterior cruciate ligament tears on the return of quadriceps muscle strength after reconstruction using an autogenous patellar tendon graft Am J Sports Med 23:686–689

    CAS  Google Scholar 

  32. Snyder-Mackler L, Delitto A, Baily SL, Stralka SW (1995) Strength of the quadriceps femoris muscle and functional recovery after reconstruction of the anterior cruciate ligament. J Bone Joint Surg Am 77:1166–1173

    CAS  PubMed  Google Scholar 

  33. Snyder-Mackler L, Fitzgerald KG, Bartolozzi AR, Cicotti MG (1997) The relationship between passive joint laxity and functional outcome after anterior cruciate ligament injury. Am J Sports Med 25:191–195

    CAS  PubMed  Google Scholar 

  34. Timoney JM, Inman WS, Quesda PM, Sharkey PF, Barrack RL, Skinner HB, Alexander AH (1993) Return of normal gait patterns after cruciate ligament reconstruction. Am J Sports Med 21:887–889

    CAS  PubMed  Google Scholar 

  35. Yasuda K, Ohkoshi Y, Tanabe Y, Kaneda K (1992) Quantitative evaluation of knee instability and muscle strength after anterior cruciate ligament reconstruction using patellar and quadriceps tendon. Am J Sports Med 20:471–475

    CAS  PubMed  Google Scholar 

  36. Wilk KE, Andrews JR (1992) Current concepts in the treatment of anterior cruciate ligament disruption. J Orthop Sports Phys Ther 15:279–293

    Google Scholar 

  37. Wilk KE, Keirns MA, Andrews JR, Clancy WG, Arrigo CA, Erber DJ (1991) Anterior cruciate ligament reconstruction rehabilitation: a six month follow-up of isokinetic testing in recreational athletes. Iso Exerc Sci 1:36–43

    Google Scholar 

  38. Wilk KE, Romaniello WT, Soscia SM, Arrigo CA, Andrews JR (1994) The relationship between subjective knee scores, isokinetic testing and functional testing in the ACL-reconstructed knee. J Orthop Sports Phys Ther 20:60–73

    CAS  PubMed  Google Scholar 

  39. Witvrouw E, Bellemans J, Verdonk R, Cambier D, Coorevits P, Almqvist F (2001) Patellar tendon versus doubled semitendinosus and gracilis tendon for anterior cruciate ligament reconstruction. Int Orthop 25:308–11–20

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alli Gokeler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gokeler, A., Schmalz, T., Knopf, E. et al. The relationship between isokinetic quadriceps strength and laxity on gait analysis parameters in anterior cruciate ligament reconstructed knees. Knee Surg Sports Traumatol Arthrosc 11, 372–378 (2003). https://doi.org/10.1007/s00167-003-0432-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-003-0432-1

Keywords

Navigation