Skip to main content

Advertisement

Log in

Mechanical properties of the rotator cuff: response to cyclic loading at varying abduction angles

  • Shoulder
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

The rotator cuff is loaded under static as well as dynamic conditions. Whilst the static properties of the rotator cuff muscle-tendon junctions have been reported, the dynamic mechanical behaviour has not. This study reports the dynamic mechanical properties with varying abduction angles in a human cadaver rotator cuff. No significant effect was found with varying the angle of testing or in the presence of a tear in the tendon. The supraspinatus was found to be the stiffest of the rotator cuff tendons followed by the subscapularis and infraspinatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. Apreleva M, Parsons IM, Warner JJ, Fu FH, Woo SL (2000) Experimental investigation of reaction forces at the glenohumeral joint during active abduction. J Shoulder Elbow Surg 9:409–417

    CAS  PubMed  Google Scholar 

  2. Bey MJ, Ramsey ML, Soslowsky LJ (2002) Intratendinous strain fields of the supraspinatus tendon: effect of a surgically created articular-surface rotator cuff tear. J Shoulder Elbow Surg 11:562–569

    Article  PubMed  Google Scholar 

  3. Bey MJ, Song HK, Wehrli FW, Soslowsky LJ (2002) Intratendinous strain fields of the intact supraspinatus tendon: the effect of glenohumeral joint position and tendon region. J Orthop Res 20:869–874

    Article  PubMed  Google Scholar 

  4. Burkhart SS, Johnson TC, Wirth MA, Athanasiou KA (1997) Cyclic loading of transosseous rotator cuff repairs: tension overload as a possible cause of failure. Arthroscopy 13:172–176

    CAS  PubMed  Google Scholar 

  5. Clark JM, Harryman DT (1992) Tendons, ligaments, and capsule of the rotator cuff. Gross and microscopic anatomy. J Bone Joint Surg Am 74:713–725

    CAS  PubMed  Google Scholar 

  6. Dowling BA, Dart AJ, Hodgson DR, Rose RJ, Walsh WR (2002) Recombinant equine growth hormone does not affect the in vitro biomechanical properties of equine superficial digital flexor tendon. Vet Surg 31:325–330

    Article  PubMed  Google Scholar 

  7. Dowling BA, Dart AJ, Hodgson DR, Rose RJ, Walsh WR (2002) The effect of recombinant equine growth hormone on the biomechanical properties of healing superficial digital flexor tendons in horses. Vet Surg 31:320–324

    Article  PubMed  Google Scholar 

  8. Fukuda H, Hamada K, Nakajima T, Tomonaga A (1994) Pathology and pathogenesis of the intratendinous tearing of the rotator cuff viewed from en bloc histologic sections. Clin Orthop 60–67

  9. Gerber C, Schneeberger AG, Beck M, Schlegel U (1994) Mechanical strength of repairs of the rotator cuff. J Bone Joint Surg Br 76:371–380

    CAS  PubMed  Google Scholar 

  10. Halder A, Zobitz ME, Schultz F, An KN (2000) Mechanical properties of the posterior rotator cuff. Clin Biomech (Bristol, Avon) 15:456–462

    Google Scholar 

  11. Itoi E, Berglund LJ, Grabowski JJ, Schultz FM, Growney ES, Morrey BF, An KN (1995) Tensile properties of the supraspinatus tendon. J Orthop Res 13:578–584

    CAS  PubMed  Google Scholar 

  12. Jozsa L, Kannus P (1997) Human tendons: anatomy, physiology and pathology. Human Kinetics, Chicago

    Google Scholar 

  13. Liu J, Hughes RE, Smutz WP, Niebur G, Nan-An K (1997) Roles of deltoid and rotator cuff muscles in shoulder elevation. Clin Biomech (Bristol, Avon) 12:32–38

    Google Scholar 

  14. Nicklin S, Waller C, Walker P, Chung WK, Walsh WR (2000) In vitro structural properties of braided tendon grafts. Am J Sports Med 28:790–793

    Google Scholar 

  15. Parsons IM, Apreleva M, Fu FH, Woo SL (2002) The effect of rotator cuff tears on reaction forces at the glenohumeral joint. J Orthop Res 20:439–446

    Article  CAS  PubMed  Google Scholar 

  16. Riemersa DJ, Schamhardt HC (1982) The cryo-jaw, a clamp designed for in vitro rheology studies of horse digital flexor tendons. J Biomech 15:619–620

    CAS  PubMed  Google Scholar 

  17. Riley GP, Harrall RL, Constant CR, Chard MD, Cawston TE, Hazleman BL (1994) Glycosaminoglycans of human rotator cuff tendons: changes with age and in chronic rotator cuff tendinitis. Ann Rheum Dis 53:367–376

    CAS  PubMed  Google Scholar 

  18. Rossouw DJ, McElroy BJ, Amis AA, Emery RJ (1997) A biomechanical evaluation of suture anchors in repair of the rotator cuff. J Bone Joint Surg Br 79:458–461

    Article  CAS  PubMed  Google Scholar 

  19. Sharkey NA, Smith TS, Lundmark DC (1995) Freeze clamping musculo-tendinous junctions for in vitro simulation of joint mechanics. J Biomech 28:631–635

    Article  CAS  PubMed  Google Scholar 

  20. Warner JJ, Bowen MK, Deng X, Torzilli PA, Warren RF (1999) Effect of joint compression on inferior stability of the glenohumeral joint. J Shoulder Elbow Surg 8:31–36

    CAS  PubMed  Google Scholar 

  21. Woo SL, Orlando CA, Camp JF, Akeson WH (1986) Effects of postmortem storage by freezing on ligament tensile behavior. J Biomech 19:399–404

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. R. Walsh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nightingale, E.J., Allen, C.P., Sonnabend, D.H. et al. Mechanical properties of the rotator cuff: response to cyclic loading at varying abduction angles. Knee Surg Sports Traumatol Arthrosc 11, 389–392 (2003). https://doi.org/10.1007/s00167-003-0404-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-003-0404-5

Keywords

Navigation