A New Approach to Abstract Syntax with Variable Binding


The permutation model of set theory with atoms (FM-sets), devised by Fraenkel and Mostowski in the 1930s, supports notions of ‘name-abstraction’ and ‘fresh name’ that provide a new way to represent, compute with, and reason about the syntax of formal systems involving variable-binding operations. Inductively defined FM-sets involving the name-abstraction set former (together with Cartesian product and disjoint union) can correctly encode syntax modulo renaming of bound variables. In this way, the standard theory of algebraic data types can be extended to encompass signatures involving binding operators. In particular, there is an associated notion of structural recursion for defining syntax-manipulating functions (such as capture avoiding substitution, set of free variables, etc.) and a notion of proof by structural induction, both of which remain pleasingly close to informal practice in computer science.

This is a preview of subscription content, log in to check access.

Author information



Additional information

Received October 2000 / Accepted in revised form April 2001

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gabbay, M., Pitts, A. A New Approach to Abstract Syntax with Variable Binding. Form Aspects Comput 13, 341–363 (2002). https://doi.org/10.1007/s001650200016

Download citation

  • Keywords: Abstract syntax; Alpha-conversion; Permutation actions; Set theory; Structural induction