Skip to main content

On the Interactive Power of Higher-order Processes Extended with Parameterization


This paper investigates the interactive power of the higher-order pi-calculus extended with parameterization. We study two kinds of parameterization: name parameterization and process parameterization. We show that each of these kinds of parameterization results in an interactively complete model, in the sense that they can express the elementary interactive model (named \(\mathbb{C}\)) with built-in recursive functions.

This is a preview of subscription content, access via your institution.


  1. Astesiano, E., Zucca, E.: Parametric channels via label expressions in CCS. Theor Comput Sci 33, 45–64 (1984)

    Article  MathSciNet  Google Scholar 

  2. Barendregt, H.P.: The lambda calculus–its syntax and semantics. North-Holland, Amsterdam (1984)

    MATH  Google Scholar 

  3. Biernacka M, Biernacki D, Lenglet S, Polesiuk P, Pous D, Schmitt A (2017) Fully abstract encodings of \(\lambda \)-calculus in HOcore through abstract machines. In: 32nd Annual ACM/IEEE symposium on logic in computer science, LICS 2017, Reykjavik, Iceland, June 20–23, 2017, pp 1–12

  4. BundgaardM, Godskesen JC, Haagensen B, Huttel H (2008) Decidable fragments of a higher order calculus with locations. In: Proceedings of 15th international workshop on expressiveness in concurrency

  5. Boreale, M.: On the expressiveness of internal mobility in name-passing calculi. Theor Comput Sci 195(2), 205–226 (1998)

    Article  MathSciNet  Google Scholar 

  6. Cutland, N.: Computability: an introduction to recursive function theory. Cambridge University Press, Cambridge (1980)

    MATH  Google Scholar 

  7. Fu, Y.: Theory of interaction. Theor Comput Sci 611, 1–49 (2016)

    Article  MathSciNet  Google Scholar 

  8. Fu, Y., Lu, H.: On the expressiveness of interaction. Theor Comput Sci 411, 1387–1451 (2010)

    Article  MathSciNet  Google Scholar 

  9. Gorla D (2008) Towards a unified approach to encodability and separation results for process calculi. In: Proceedings of the 19th international conference on concurrency theory (CONCUR 2008), volume 5201 of LNCS. Springer, pp 492–507

  10. Gorla D, Nestman U (2016) Full abstraction for expressiveness: history, myths and facts. Math Struct Comput Sci 26(4):639-654

  11. Giusto CD, Pérez JA, Zavattaro G (2009) On the expressiveness of forwarding in higher-order communication. In: Proceedings of the 6th international colloquium on theoretical aspects of computing (ICTAC '09 ), volume LNCS 5684, pp 155–169

  12. Giambiagi P, Schneider G, Valencia F (2004) On the expressiveness of infinite behavior and name scoping in process calculi. In: Proceedings of FOSSACS 2004, volume 2987 of LNCS, pp 226–240

  13. Hirschkoff D, Lozes É, Sangiorgi D (2002) Separability, expressiveness, and decidability in the ambient logic. In Proceedings 17th annual IEEE symposium on logic in computer science. IEEE, pp 423–432

  14. Lanese I, Perez JA, Sangiorgi D, Schmitt A (2008) On the expressiveness and decidability of higher-order process calculi. In: Proceedings of the 23rd annual IEEE symposium on logic in computer science (LICS 2008). IEEE Computer Society, pp 145–155. Journal version in [LPSS11]

  15. Lanese I, Pérez JA, Sangiorgi D, Schmitt A (2010) On the expressiveness of polyadic and synchronous communication in higher-order process calculi. In: Proceedings of the 36th international colloquium on automata, languages and programming (ICALP 2010), LNCS. Springer, pp 442–453

  16. Lanese, I., Pérez, J.A., Sangiorgi, D., Schmitt, A.: On the expressiveness and decidability of higher-order process calculi. Inf Comput 209(2), 198–226 (2011)

    Article  MathSciNet  Google Scholar 

  17. Milner, R.: Communication concurrency. Prentice Hall, New York (1989)

    MATH  Google Scholar 

  18. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes (parts i and ii). Inf Comput 100(1), 1–77 (1992)

    Article  Google Scholar 

  19. Merro, M., Sangiorgi, D.: On asynchrony in name-passing calculi. Math Struct Comput Sci 14, 715–767 (2004)

    Article  MathSciNet  Google Scholar 

  20. Nestmann, U.: What is a good encoding of guarded choices? Inf Comput 56, 287–319 (2000)

    Article  MathSciNet  Google Scholar 

  21. Nestmann U, Pierce B (1996) Decoding choice encodings. In: Proceedings of CONCUR 1996, volume 1119 of LNCS. Springer, pp 179–194

  22. Palamidessi, C.: Comparing the expressive power of the synchronous and the asynchronous pi-calculus. Math Struct Comput Sci 13, 685–719 (2003)

    Article  Google Scholar 

  23. Palamidessi C, Saraswat V, Valencia FD, Victor B (2003) On the expressiveness of linearity vs persistence in the asychronous pi-calculus. In: Proceedings of the 21st annual ieee symposium on logic in computer science (LICS'06), IEEE Computer Society, pp 59–68

  24. Peters K, van Glabbeek RJ (2015) Analysing and comparing encodability criteria for process calculi. Arch Formal Proofs

  25. Sangiorgi D (1992) Expressing mobility in process algebras: first-order and higher-order paradigms. Ph.D. thesis, University of Edinburgh

  26. Sangiorgi, D.: Bisimulation for higher-order process calculi. Inf Comput 131(2), 141–178 (1996)

    Article  MathSciNet  Google Scholar 

  27. Sangiorgi, D., Walker, D.: The pi-calculus: a theory of mobile processes. Cambridge Universtity Press, Cambridge (2001)

    MATH  Google Scholar 

  28. Thomsen B (1989) A calculus of higher order communication systems. In: Proceedings of POPL'89, Austin, Texas, United States, pp 143–154

  29. Thomsen, B.: Plain CHOCS, a second generation calculus for higher-order processes. Acta Inf 30(1), 1–59 (1993)

    Article  MathSciNet  Google Scholar 

  30. van Glabbeek R (2018) A theory of encodings and expressiveness (extended abstract). In: Foundations of software science and computation structures— 21st international conference, FOSSACS 2018, pp 183–202

  31. van Glabbeek R,WeijlandW(1989) Branching time and abstraction in bisimulation semantics. In: Information processing'89. North-Holland, pp 613–618

  32. Xu, X.: Distinguishing and relating higher-order and first-order processes by expressiveness. Acta Inf 49(7–8), 445–484 (2012)

    Article  MathSciNet  Google Scholar 

  33. Xu X, Yin Q, Long H (2013) On the expressiveness of parameterization in process-passing. In: Proceedings of the 10th international workshop on web services and formal methods, volume 8739 of LNCS. Springer, pp 147–167

  34. Xu X, Yin Q, Long H (2015) On the computation power of name parameterization in higher-order processes. In: Proceedings 8th interaction and concurrency experience, ICE 2015, Grenoble, France, 4–5th June 2015, pp 114–127

Download references


This work is supported by the NSF of China (61872142, 61772336, 62072299 and 61572318). The authors are grateful for the comments and suggestions from the anonymous referees and the members of the BASICS lab.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Xian Xu.

Additional information

Naijun Zhan

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Xu, X., Yin, Q. et al. On the Interactive Power of Higher-order Processes Extended with Parameterization. Form Asp Comp 33, 151–183 (2021).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: