Advertisement

A modeling and verification framework for optical quantum circuits

  • Sidi Mohamed Beillahi
  • Mohamed Yousri Mahmoud
  • Sofiène TaharEmail author
Original Article
  • 15 Downloads

Abstract

Quantum computing systems promise to increase the capabilities for solving problems which classical computers cannot handle adequately, such as integers factorization. In this paper, we present a formal modeling and verification approach for optical quantum circuits, where we build a rich library of optical quantum gates and develop a proof strategy in higher-order logic to reason about optical quantum circuits automatically. The constructed library contains a variety of quantum gates ranging from 1-qubit to 3-qubit gates that are sufficient to model most existing quantum circuits. As real world applications, we present the formal analysis of several quantum circuits including quantum full adders and the Grover’s oracle circuits, for which we have proved the behavioral correctness and calculated the operational success rate, which has never been provided in the literature. We show through several case studies the efficiency of the proposed framework in terms of the scalability and modularity.

Keywords

Formal methods Interactive theorem proving High-order logic Quantum computing Quantum optics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work has been supported in part by the Canadian federal research funding agency NSERC, Grant No. RGPIN/06809-2015. We wish also to thank the Associate Editor and the Anonymous Referees for their comments which helped to improve the paper.

References

  1. BBC+95.
    Barenco A, Bennett CH, Cleve R, DiVincenzo DP, Margolus N, Shor P, Sleator T, Smolin JA, Weinfurter H (1995) Elementary gates for quantum computation. Phys Rev A Am Phys Soc 52(5): 3457–3467CrossRefGoogle Scholar
  2. BM19.
    Beillahi SM, Mahmoud MY (2019) HOL-light source code. https://github.com/beillahi/FMV-QC-HOL.git
  3. BMT16a.
    Beillahi SM, Mahmoud MY, Tahar S (2016) Hierarchical verification of quantum circuits. In: Proceedings of NASA formal methods (NFM 2016), LNCS 9690. Springer, pp 344–352Google Scholar
  4. BMT16b.
    Beillahi SM, Mahmoud MY, Tahar S (2016) Optical quantumgates formalization in hol light Technical Report, ECED epartment, Concordia University. Montreal, QC, CanadaGoogle Scholar
  5. BV97.
    Bernstein E, Vazirani U (1997) Quantum complexity theory. SIAM J Comput 26(5): 1411–1473MathSciNetCrossRefzbMATHGoogle Scholar
  6. BL04.
    Black PE, Lane AW (2004) Modeling quantum information systems. In: Proceedings of quantum information and computation II. SPIE 5436, pp. 340–347Google Scholar
  7. BKN15.
    Boender J, Kammüller F,Nagarajan R(2015) Formalization of quantum protocols using Coq. In: Proceedings of international workshop on quantum physics and logic (QPL 2015), pp 71–83Google Scholar
  8. Bog47.
    Bogoliubov NN (1947) On the theory of superfluidity. J Phys (USSR) 11(1): 23–32MathSciNetGoogle Scholar
  9. BMK10.
    Brown KL, Munro WJ, Kendon VM (2010) Using quantum computers for quantum simulation. Entropy 12(11): 2268–2307MathSciNetCrossRefzbMATHGoogle Scholar
  10. BTS+02.
    Bruce JW, Thornton MA, Shivakumaraiah L, Kokate PS, Li X (2002) Efficient adder circuits based on a conservative reversible logic gate. In: Proceedings of IEEE computer society annual symposium on VLSI (ISVLSI 2002), pp 83–88Google Scholar
  11. FDH04.
    Fowler AG, Devitt SJ, Hollenberg LCL (2004) Implementation of Shor’s algorithm on a linear nearest neighbour qubit array. Quantum Inf Comput 4(4): 237–251MathSciNetzbMATHGoogle Scholar
  12. FGP13.
    Franke-Arnold S, Gay SJ, Puthoor IV (2013) Quantum process calculus for linear optical quantum computing. In: Proceedings of reversible computation (RC 2013), LNCS 7948. Springer, pp 234–246Google Scholar
  13. GFM10.
    Golubitsky O, Falconer SM, Maslov D (2010) Synthesis of the optimal 4-bit reversible circuits. In: Proceedings of design automation conference (DAC 2010), pp. 653–656Google Scholar
  14. GWD+09.
    Grosse D, Wille R, Dueck GW, Drechsler R (2009) Exact multiple-control toffoli network synthesis with SAT techniques. IEEE Trans Comput Aided Des Integ Circuits Syst 28(5): 703–715CrossRefGoogle Scholar
  15. HSS+16.
    Häner T, Steiger DS, Smelyanskiy M, Troyer M (2016) High performance emulation of quantum circuits. In: Proceedings of international conference for high performance computing, networking, storage and analysis (SC 2016), pp 866–874Google Scholar
  16. Har09.
    Harrison J (2009) Handbook of practical logic and automated reasoning. Cambridge University Press, CambridgeCrossRefzbMATHGoogle Scholar
  17. Har96.
    Harrison J (1996) HOL light: a tutorial introduction. proc. formal methods in computer-aided design (FMCAD1996), LNCS 1166. Springer, pp 265–269Google Scholar
  18. Har95.
    Harrison J (1995) Binary decision diagrams as a HOL derived rule. Comput J 38(2): 162–170CrossRefGoogle Scholar
  19. HSY+06.
    Hung WNN, Song X, Yang G, Yang J, Perkowski MA (2006) Optimal synthesis of multiple output boolean functions using a set of quantum gates by symbolic reachability analysis. IEEE Trans Comput Aided Des Integr Circuits Syst 25(9): 1652–1663CrossRefGoogle Scholar
  20. HSY+04.
    Hung WNN, Song X, Yang G, Yang J, Perkowski MA (2004) Quantum logic synthesis by symbolic reachability analysis. In: Proceedings of design automation conference (DAC 2004), pp 838–841Google Scholar
  21. KAF+17.
    Khammassi N, Ashraf I, Fu X, Almudever CG, Bertels K (2017) QX: a high-performance quantum computer simulation platform. In: Proceedings of design, automation and test in Europe (DATE 2017), pp 464–469Google Scholar
  22. KMN+07.
    Kok P, MunroWJ , Nemoto K, Ralph TC, Dowling JP, Milburn GJ (2007) Linear optical quantum computing with photonic qubits. Rev Mod Phys Am Phys Soc 79(1): 135–174CrossRefGoogle Scholar
  23. KLM01.
    Knill E, Laflamme R, Milburn GJ (2001) A scheme for efficient quantum computation with linear optics. Nature 409: 46–52CrossRefGoogle Scholar
  24. Kni96.
    Knill EH (1996) Conventions for quantum pseudocode. Technical Report, LAUR-96-2724, Los Alamos National LaboratoryGoogle Scholar
  25. LL05.
    Liang L, Li C (2005) Realization of quantum SWAP gate between flying and stationary qubits. Phys Rev A Am Phys Soc 72(2): 024303CrossRefGoogle Scholar
  26. LLW+16.
    Liu T, Li Y, Wang S, Mingsheng Y, Zhan N (2016) A theorem prover for quantum hoare logic and its applications. CoRR. arXiv:1601.03835
  27. M15.
    Mahmoud MY (2015) Formal analysis of quantum optics. Ph.D. Department of Electrical and Computer Engineering, Concordia University, Montreal, QuebecGoogle Scholar
  28. MPT15.
    Mahmoud MY, Panangaden P, Tahar S (2015) On the formal verification of optical quantum gates in HOL. In: Proceedings of formal methods for industrial critical systems (FMICS 2015), LNCS vol 9128. Springer, pp 198–211Google Scholar
  29. MAT14.
    Mahmoud MY, Aravantinos V, Tahar S (2014) Formal verification of optical quantum flip gate. In: Proceedings interactive theorem proving (ITP 2014), LNCS vol 8558. Springer, pp 358–373Google Scholar
  30. MAT13.
    MahmoudMY, Aravantinos V, Tahar S (2013) Formalization of infinite dimension linear spaces with application to quantum theory. In: Proceedings NASA formal methods (NFM 2013), LNCS vol 7871. Springer, pp 413–427Google Scholar
  31. MW95.
    Mandel L, Wolf E (1995) Optical coherence and quantum optics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  32. Mil89.
    Milburn GJ (1989) Quantum optical Fredkin gate. Phys Rev Lett Am Phys Soc 62(18): 2124–2127CrossRefGoogle Scholar
  33. NC10.
    Nielsen MA, Chuang IL (2010) Quantum computation and quantum information. Cambridge University Press, CambridgeCrossRefzbMATHGoogle Scholar
  34. NWM+16.
    Niemann P, Wille R, Miller DM, Thornton MA, Drechsler R. (2016) QMDDs: efficient quantum function representation and manipulation. IEEE Trans Comput Aided Des Integr Circuits Syst 35(1): 86–99CrossRefGoogle Scholar
  35. NWD14.
    Niemann P, Wille R, Drechsler R (2014) Efficient synthesis of quantum circuits implementing Clifford group operations. In: Proceedings of Asia and South Pacific design automation conference (ASP-DAC 2014), pp 483–488Google Scholar
  36. Pac74.
    Packel EW (1974) Hilbert space operators and quantum mechanics. Am Math Mon 81(8): 863–873MathSciNetCrossRefGoogle Scholar
  37. PMO09.
    Politi A, Matthews JCF, O’Brien JL (2009) Shor’s quantum factoring algorithm on a photonic chip. Science 325(5945): 1221–1221MathSciNetCrossRefzbMATHGoogle Scholar
  38. RRG07.
    Ralph TC, Resch KJ, Gilchrist A (2007) Efficient Toffoli gates using qudits. Phys Rev A Am Phys Soc 75(2): 022313CrossRefGoogle Scholar
  39. RGM+03.
    Ralph TC, Gilchrist A, Milburn GJ, Munro WJ, Glancy S (2003) Quantum computation with optical coherent states. Phys Rev A Am Phys Soc 68(4): 042319CrossRefGoogle Scholar
  40. RLB+02.
    Ralph TC, Langford NK, Bell TB, White AG (2002) Linear optical controlled-NOT gate in the coincidence basis. Phys Rev A Am Phys Soc 65(6): 062324CrossRefGoogle Scholar
  41. RevLib.
    RevLib: an online resource for benchmarks within the domain of reversible and quantum circuits. http://www.revlib.org/ 2018.
  42. RPZ17a.
    Rand R, Paykin J, Zdancewic S (2018) QWIRE practice: formal verification of quantum verification in Coq. In: Proceedings of international conference on quantum physics and logic (QPL 2017), EPTCS, vol 266, pp 119–13Google Scholar
  43. RPZ17b.
    Rand R, Paykin J, Zdancewic S (2017) QWIRE: a core language for quantum circuits. In: Proceedings of ACM SIGPLAN symposium on principles of programming languages (POPL 2017), ACM, pp 846–858Google Scholar
  44. SWH+12.
    Soeken M, Wille R, Hilken C, Przigoda N, Drechsler R (2012) Synthesis of reversible circuits with minimal lines for large functions. In: Proceedings of Asia and South Pacific design automation conference (ASP-DAC 2012), pp 85–92Google Scholar
  45. SWM12.
    Sasanian Z, Wille R, Miller DM (2012) Realizing reversible circuits using a new class of quantum gates. In: Proceedings of design automation conference (DAC 2012), pp 36–41Google Scholar
  46. SBM06.
    Shende VV, Bullock SS, Markov IL (2006) Synthesis of quantumlogic circuits. IEEE Trans Comput Aided Des Integr Circuits Syst 25(6): 1000–1010CrossRefGoogle Scholar
  47. Shor97.
    Shor PW (1997) Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J Comput 26(5): 1484–1509MathSciNetCrossRefzbMATHGoogle Scholar
  48. SSA16.
    Smelyanskiy M, Sawaya NPD, Aspuru-Guzik A (2016) qHiPSTER: the quantum high performance software testing environment. CoRR. arXiv:1601.07195
  49. VRM+03.
    Viamontes GF, Rajagopalan M, Markov IL, Hayes JP (2003) Gate level simulation of quantum circuits. In: Proceedings of Asia and South Pacific design automation conference (ASP-DAC 2003), pp 295–301Google Scholar
  50. WHL+17.
    Wang H, He Y, Li YH, Su ZE, Li B, Huang HL, Ding X, ChenMC , Liu C, Qin J, Li JP, He YM, Schneider C, Kamp M, Peng CZ, Höfling S, Lu CY, Pan JW (2017) High-efficiency multiphoton Boson sampling. Nat Photon 11: 361–365CrossRefGoogle Scholar
  51. WS14.
    Wecker D, Svore KM(2014) LIQUi \({\rangle}\)|: A software design architecture and domain-specific language for quantum computing. CoRR. arXiv:1402.4467
  52. WLD14.
    Wille R, Lye A, Drechsler R (2014) Optimal SWAP gate insertion for nearest neighbor quantum circuits. In: Proceedings of Asia and South Pacific design automation conference (ASP-DAC 2014), pp 489–494Google Scholar
  53. YM10.
    Yamashita S, Markov IL (2010) Fast equivalence-checking for quantum circuits. Quantum Inf Comput 10(9): 721–734zbMATHGoogle Scholar
  54. Yin11.
    Ying M (2011) Floyd–Hoare logic for quantum programs. ACM Trans Program Lang Syst 33(6): 19:1–19:49CrossRefGoogle Scholar
  55. ZW17.
    Zulehner A, Wille R (2017) Advanced simulation of quantum computations. CoRR. arXiv:1707.00865

Copyright information

© British Computer Society 2019

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringConcordia UniversityMontrealCanada
  2. 2.Department of Electrical Engineering and Computer ScienceUniversity of OttawaOttawaCanada

Personalised recommendations